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In vivo approaches
Short hairpin RNAs (shRNAs) are particularly powerful tools for 
probing gene function in transgenic animals. Animals that are 
mosaic for knockdown of a gene of interest can be created by the 
transplantation of shRNA-modified stem cells23. Mice in which 
knockdown is achieved throughout the animal can also be 
produced24 . This can be achieved using optimized shRNAs that 
are integrated into a specific genomic locus that is competent for 
expression in most tissues. This strategy offers the potential for 
tissue-specific or regulated repression of nearly any gene in the 
tissue or cell type of interest.

Small RNA biogenesis
Currently, our understanding of small RNA 
biogenesis is most complete for small 
RNAs that exert their effects through RISC. 
In animals, three main classes of such small 
RNAs are recognized: small interfering 
RNAs (siRNAs), PIWI-interacting RNAs 
(piRNAs), and miRNAs1. siRNAs are derived 
from double-stranded precursors that are 
processed by the RNase III family enzyme, 
Dicer. In mammals, endogenous siRNAs 
are most abundant in germ cells, but in 
invertebrates they are more widespread. 
miRNA precursors contain short hairpin 
segments that contain the mature miRNA 
sequence. These precursors are processed 
through the serial action of two 
double-stranded RNAses (dsRNAses), 
Drosha and Dicer. piRNAs are mainly 
expressed in germ cells, in which they 
guard against the activity of transposons. 
Their biogenesis remains to be fully 
understood.

Small RNA discovery
Small RNA discovery has been revolutionized by 
next-generation sequencing. Following ligation 
of specific linkers to small RNAs, cDNAs can be 
produced, which are ideally suited to sequencing 
using short-read platforms. Such approaches 
have expanded the catalogue of small RNAs that 
are thought to act through RISC and have 
enabled the discovery of novel small RNA classes. 
Deep sequencing has also proved useful for 
monitoring the expression of annotated small 
RNAs, but alternative strategies, such as 
microarrays and quantitative PCR (qPCR), also 
provide economical alternatives. Databases now 
offer online catalogues of known small RNAs2.

Targeting small RNAs for therapeutics
Alterations in miRNAs themselves, or in 
their binding sites on crucial targets, 
have been associated with human 
disease. This presents an opportunity to 
agonize or antagonize specific miRNAs 
for therapeutic benefit. Several 
strategies have been developed to 
deliver antagomirs in vivo. These 
approaches have been validated in 
preclinical models, including rodents 
and primates, and some miRNA 
antagonists have entered human 
clinical trials25.   

Small RNAs in therapy
Both single-gene and genome-wide approaches 
using small RNAs have great potential for the 
discovery of new therapeutic targets for a variety of 
diseases. Some of these targets will lie within protein 
classes that are amenable to conventional drug 
discovery. Others will be among protein classes 
generally considered 'undruggable'. In these cases, 
small RNAs themselves offer a novel therapeutic 
modality, although delivery of small RNAs to target 
cells in vivo has proved challenging. Many groups are 
also pursuing the use of gene therapy approaches to 
express shRNAs in specific disease contexts.

Small RNA tools for screening
Small RNA tools have revolutionized the 
ability to scan genomes for proteins 
that have an effect on a specified 
phenotype. Libraries of long dsRNAs 
have been widely used in worms and 
Drosophila melanogaster cells, and 
collections of transgenic flies expressing 
dsRNA triggers are readily available17–19. 
In mammals, both genome-wide and 
subgenomic, focused libraries of 
synthetic siRNAs and shRNA expression 
constructs are widely used20–22. 
Screening can be carried out using each 
trigger individually, often using 
high-content measurement methods, or 
in multiplexed formats, which often use a 
selective pressure to detect an impact on 
a specific process.

Small RNA function 
Understanding the function of small RNAs often begins with studying their 
expression patterns. The identification of potential targets relies on the 
assumption that the small RNA and the target must share some sequence 
complementarity. Computational algorithms predict miRNA targets on the 
basis of the presumed character of miRNA–mRNA interactions and the 
conservation of their binding sites3,4. Several biochemical methods of 
target identification have also been developed, such as crosslinking 
immunoprecipitation (CLIP)5 and tandem affinity purification of miRNA target 
mRNAs (TAP-Tar)6. Functional studies of small RNAs can rely on conventional 
genetic strategies, such as knockouts. Overexpression of miRNA and the use 
of miRNA antagonists are also popular approaches. Antagomirs are 
chemically synthesized miRNA-complementary oligonucleotides with 
modified chemical backbones that act as antisense inhibitors of miRNA 
function7–9. Genetically encoded 'decoys' called miRNA sponges that contain 
miRNA binding sites function similarly to antagomirs by titrating the miRNA 
away from its natural targets10. Model organisms, such as Caenorhabditis 
elegans, Drosophila melanogaster and zebrafish, have also proved to be key 
for understanding the function of conserved small RNAs.

Types of small RNA tools
The repressive potential of small RNA pathways can be 
reoriented towards selected cellular genes, enabling studies of 
gene function. In mammals, two types of RNAi triggers are widely 
used. siRNAs are transiently delivered to cells, usually in culture, 
and enter RISC without the need for further processing11. 
shRNAs must be expressed from a transiently delivered or 
genomically integrated vector and must be processed by Drosha 
and Dicer or, in some cases, Dicer alone12–14. siRNAs are simple to 
use but silence their targets only transiently, limited by the 
persistence of the chemically synthesized trigger. shRNAs offer 
more flexibility; integrated constructs can provide essentially 
permanent repression and the shRNAs themselves can be 
expressed from regulated promoters, enabling tuning of 
repression levels and examination of reversible effects15,16. 
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Tools for studying and using small RNAs: from pathways  
to functions to therapies

Kenneth Chang and Gregory J. Hannon
During the past decade, small RNAs have emerged as crucial regulators of gene 
expression and genome function, having roles in almost every aspect of biology1. Many 
small RNAs act through RNA interference (RNAi)-related mechanisms, which involve 
programming the RNA-induced silencing complex (RISC) to recognize and repress targets. 
One class of small RNA, the microRNAs (miRNAs), naturally regulates programmes of gene 
expression. Altered miRNA function contributes to human disease, and manipulation of 
specific miRNAs is now being pursued as a novel therapeutic modality. Small RNAs have 

also been adapted for use as tools based on reprogramming the RNAi machinery to silence 
specific coding or non-coding RNAs. These tools have been exploited to investigate gene 
function in cultured cells and in living animals. Genome-scale collections of silencing 
triggers permit phenotype-based genetic screens to be carried out easily in organisms in 
which they were previously difficult or impossible. Such strategies are being used to 
discover and validate new therapeutic targets, and small RNAs themselves may offer a 
mechanism for inhibiting targets that are currently viewed as 'undruggable'.

GE Healthcare Dharmacon RNAi Solutions
Access the largest and most complete portfolio of innovative and technologically 
advanced RNAi tools for gene silencing. Since discovery of the endogenous RNAi 
pathway,  our scientists have made key contributions to the field of RNAi that have 
been foundational to the development of potent, specific  and  highly functional 
siRNA, microRNA-adapted shRNA and microRNA reagents. Today, GE Healthcare 
Dharmacon RNAi products facilitate a variety of applications including transient, 
long-term, inducible and in vivo RNAi strategies that extend from basic research in 
biology to improved therapeutic strategies in medicine.

•	siRNA	—	Patented	dual-strand	modifications	in	ON-TARGETplus™	siRNA	provides	
unrivaled	specificity	and	potency;		Accell™	siRNA	is	the	only	siRNA	reagent	that	can	
be delivered to difficult-to-transfect cells WITHOUT a transfection reagent

•	shRNA	—	microRNA-adapted	shRNA	for	constitutive	and	inducible	RNAi	provide	
specific and potent, long-term silencing

•	microRNA	—	Up-regulate	or	suppress	endogenous	mature	microRNA	function	 
with rationally-designed synthetic and expressed microRNA mimic and hairpin 
inhibitors

In addition, our portfolio of molecular biology tools includes large collections of 
cDNAs and ORFs for gene overexpression and RNAi rescue, PCR and qPCR reagents, 
delivery reagents as well as validated protocols to support the entire RNAi workflow. 
GE Healthcare Dharmacon, Inc. continues to be the industry leader in the field of RNA 
chemistry, RNAi biology and high-throughput screening, and partners with the RNAi 
screening community through participation in the RNAi Global Initiative (www.
rnaiglobal.org). 
From single gene knockdown to genome-scale RNAi screens, find your RNAi solutions at 
gelifesciences.com/dharmacon 

Abbreviations 
m7G, 7-methylguanosine cap; 2′OMe, 2′-O-methyl;  
MSCV, murine stem cell virus.
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