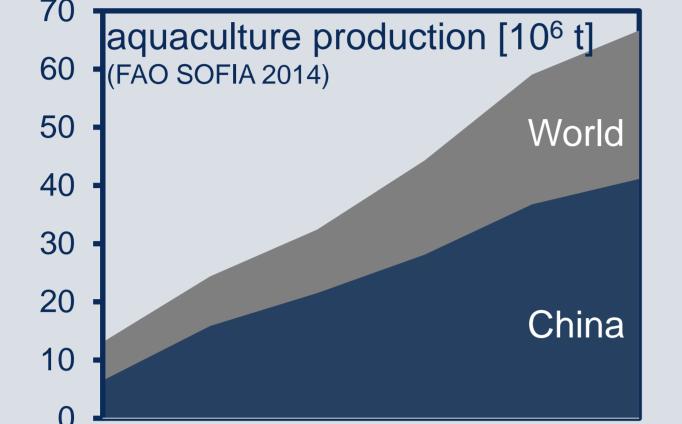
Leibniz Institute For Baltic Sea Research Warnemünde

1990

1995

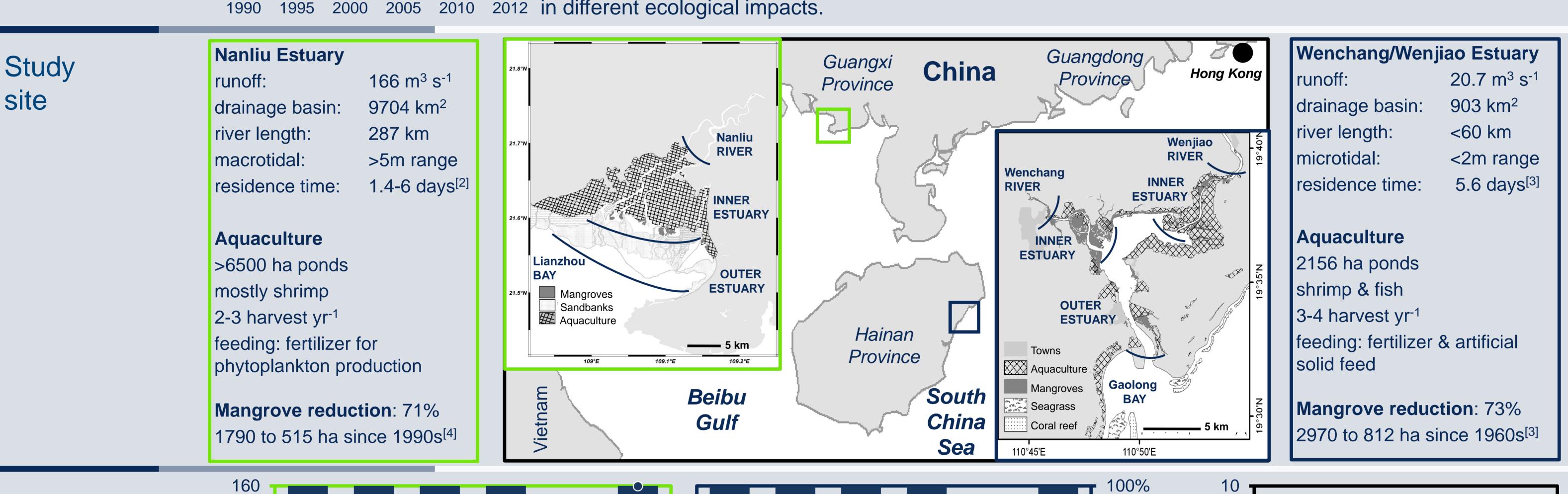

Effects of aquaculture effluents on nitrogen characteristics in two Chinese estuaries

David Kaiser^a | Lucia S. Herbeck^b

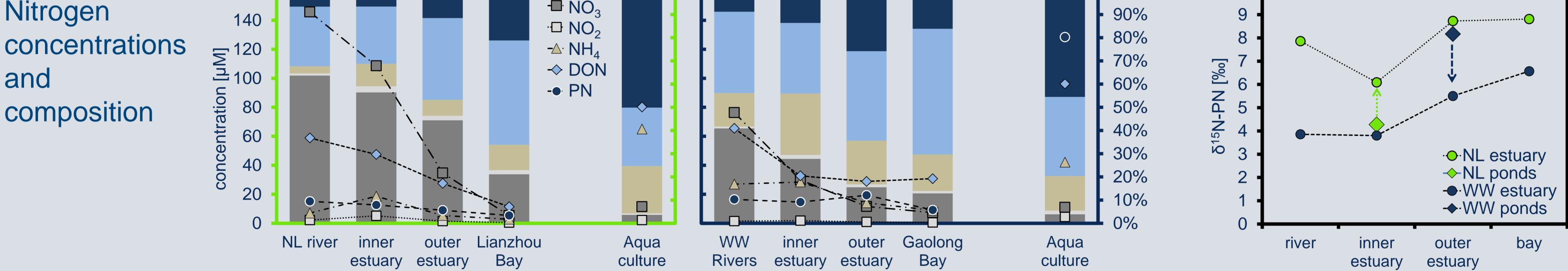
^a Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Germany; david.kaiser@io-warnemuende.de ^b Leibniz Center for Tropical Marine Ecology (ZMT), Bremen, Germany; lucia.herbeck@zmt-bremen.de

Introduction

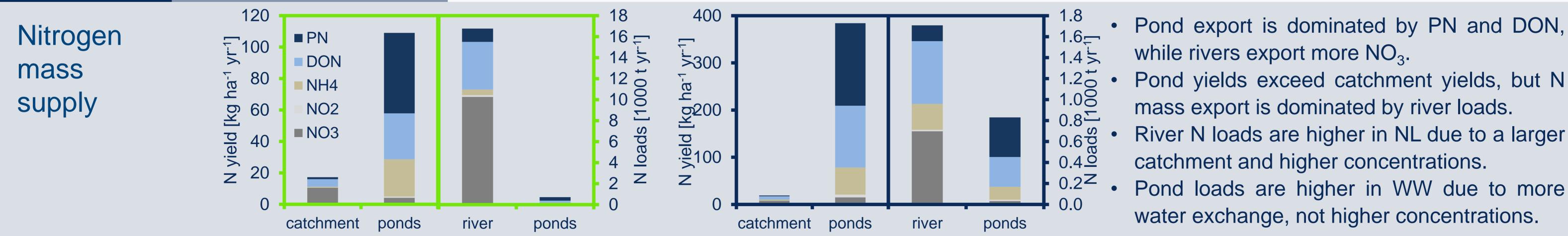
2000


2010

- NO₃


Growing aquaculture production raises environmental concerns, particularly in China. The creation of brackish-water ponds in coastal areas has lead to large-scale destruction of mangrove forests, drastically reducing their capacity to filter anthropogenic pollution. At the same time, pond effluents, loaded with nutrients from feed and animal excretions, cause eutrophication in near-shore waters. This can have negative effects on adjacent seagrass and coral ecosystems. The effects of aquaculture depend on its

spatial extend, climatic setting, and cultivation practice, which vary between regions.^[1]


The Nanliu (NL) and Wenchang/Wenjiao (WW) Rivers are both situated in southern China, but the aquaculture in their estuaries is characterized by different management and hydrological influence, resulting 2012 in different ecological impacts.

140

- NO₃ dominance in rivers reflects agricultural fertilizer influence^[5,6], especially in NL, where NO₃ is the largest fraction throughout the estuary. NO_3 is conservatively mixed in both estuaries, confirming rivers as the main source.
- Pond water N is dominated by PN from feed and *in situ* primary production, and DON and NH₄ from feed leaching and animal excretions.^[1,6]
- Low $\delta^{15}N$ in NL ponds result from direct fertilizer uptake by phytoplankton^[7], high $\delta^{15}N$ in WW ponds from use of additional animal feed.^[1]
- Changing N composition shows pond influence in the inner estuary of NL ($\delta^{15}N\downarrow$ DON \uparrow NH₄ \uparrow) and entire estuary of WW ($\delta^{15}N\uparrow$ PN \uparrow %NH₄ \uparrow).

- Pond export is dominated by PN and DON,
- Pond yields exceed catchment yields, but N
- River N loads are higher in NL due to a larger
- In WW, pond effluents have been shown to cause eutrophication^[1,8], increasing coastal sedimentary H_2S as well as enhance microalgal growth, and diminishing seagrass performance.^[9] consequences
 - In NL, pond water impact is outweighed by river loads causing eutrophic conditions.^[4] Due to tidal export they have no apparent negative near-shore effect^[5] but disperse to remote coastal systems.^[7]
 - Aquaculture impact depends on a combination of pond management, background riverine pollution, and hydrology. These factors favor high impact of effluents in WW compared to NL.

Acknowledgements

Ecological

The German Federal Ministry for Education and Science (grant no's: 03F 0607 B, 03F0457A, 03F0620) as well as the Ministry of Education of P.R. China (grant no. IRT0427) and the Chinese Ministry of Science and Technology (grant no. 2007DFB20380) financed this research in the course of the bilateral LANCET and BEIBU projects. We thank all co-workers and partners of the these projects for assistance during field and lab work as well as for contributions to data analysis.

References

[1] Herbeck et al. 2013 – Continental Shelf Research, 57, 92-104; doi:10.1016/j.csr.2012.05.006 [2] Sun et al. 2014 – Journal of the Ocean University of China, 13, 13-22; doi:10.1007/s11802-014-1963-4 [3] Krumme et al. 2012 – Marine Environmental Research 82, 28-39; doi:10.1016/j.marenvres.2012.09.002 [4] Kaiser 2014 – Dissertation, University Bremen, 177pp; http://nbn-resolving.de/urn:nbn:de:gbv:46-00103622-11 [5] Kaiser et al. 2013 – Science of the Total Environment, 450–451, 92-107; doi: 10.1016/j.scitotenv.2013.01.096 [6] Herbeck et al. 2011 – Estuarine, Coastal and Shelf Science, 93, 375-388, doi:10.1016/j.ecss.2011.05.004 [7] Kaiser et al. 2014 – Continental Shelf Research, 82, 99-118; doi:10.1016/j.csr.2014.04.006 [8] Liu et al. 2011 – Marine Chemistry, 125, 49-68; doi:10.1016/j.marchem.2011.02.003 [9] Herbeck et al. 2014 – Marine Pollution Bulletin, 85, 190-203; doi:10.1016/j.marpolbul.2014.05.050

Download