Validation of an Automated Cell-Based Bioluminescent TNFα Blocker Bioassay

Brad Larson¹, Tracy Worzella², Rich Moravec², Neal Cosby², Frank Fan², Teresa Surowy², and Peter Banks¹

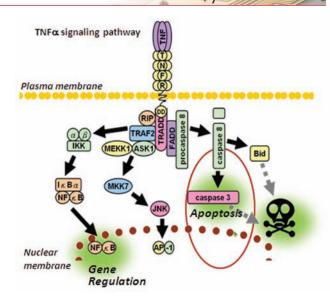
¹BioTek Instruments, Inc., Winooski, Vermont, USA • ²Promega Corporation, Madison, Wisconsin, USA

Introduction

BioTek

BioTek Instrumentation

Plate Uniformity Test (continued)


TNF α blocker biopharmaceuticals represent an important and successful class of protein drugs used in the treatment of several autoimmune diseases, including rheumatoid arthritis, psoriasis and Crohn's disease. This success is driving the discovery of new versions of these protein drugs, new indications, and biosimilars development due to the fact that some of these drugs will soon lose patent protection.

Bioassays are indispensible tools in biopharmaceutical drug development and commercialization. They are used to quantify biological activity and stability of drugs or drug candidates. The automation of these assays can serve to create an accurate, robust process which can allow the researcher to perform other more important functions. Precision and accuracy of the automated bioassay are allimportant in both drug discovery and development, and in manufactured biopharmaceutical lot release.

Here we demonstrate the automation of a 96-well homogeneous bioluminescent TNF α blocker bioassay based on quantification of caspase 3 activity. The bioassay can be performed in a single day, and uses single-use, frozen U937 (human) cells which exhibit rapid response to TNFα. A simple, yet robust liquid handler was used to automate the assay steps of antibody titration and of cell and reagent dispensing.

Part of bioassay development includes analysis of assay ruggedness, in which the influence of external factors on test results is measured. The study described here includes plate uniformity, as well as anti-TNFα blocker antibody titration tests. Variables included microplate used, run-to-run variability, as well as a comparison between manual and automated processing. Assessment of ruggedness was based on (a) variability around RLUs obtained in plate uniformity tests using a single dose of TNF α blocker antibody, and (b) variability of EC₅₀ and assay window obtained between runs of full doseresponse titrations of TNF α blocker antibody.

TNFα Blocker Bioassav

Figure 1 – The TNF α signaling pathway leads to multiple endpoints, including NfKB gene regulation, apoptosis induction, and cell death. The bioassay referenced here monitors caspase 3 activity.

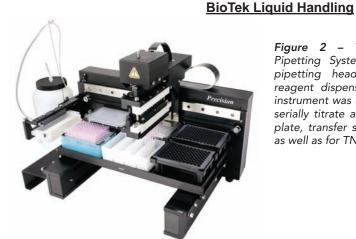
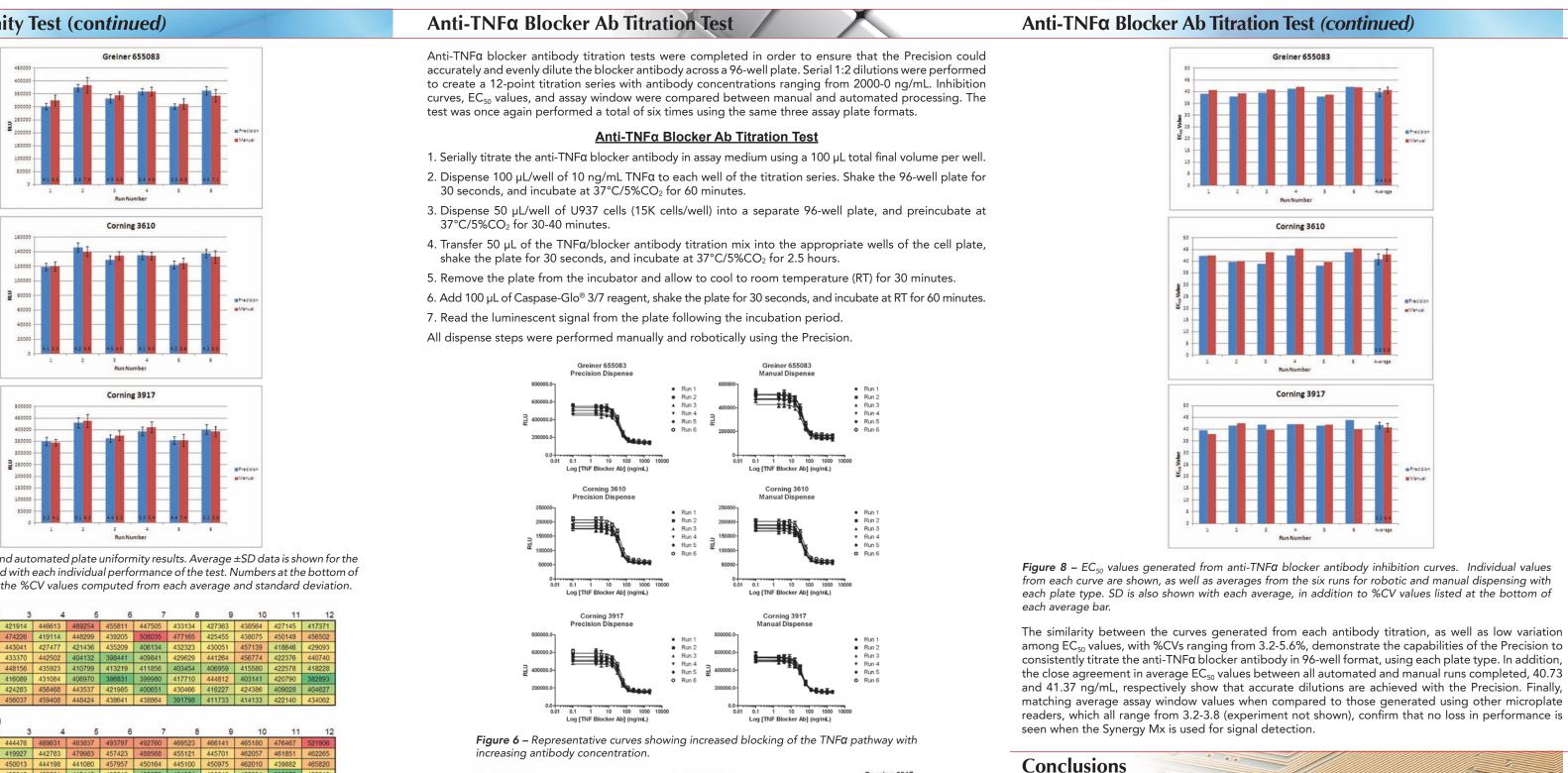
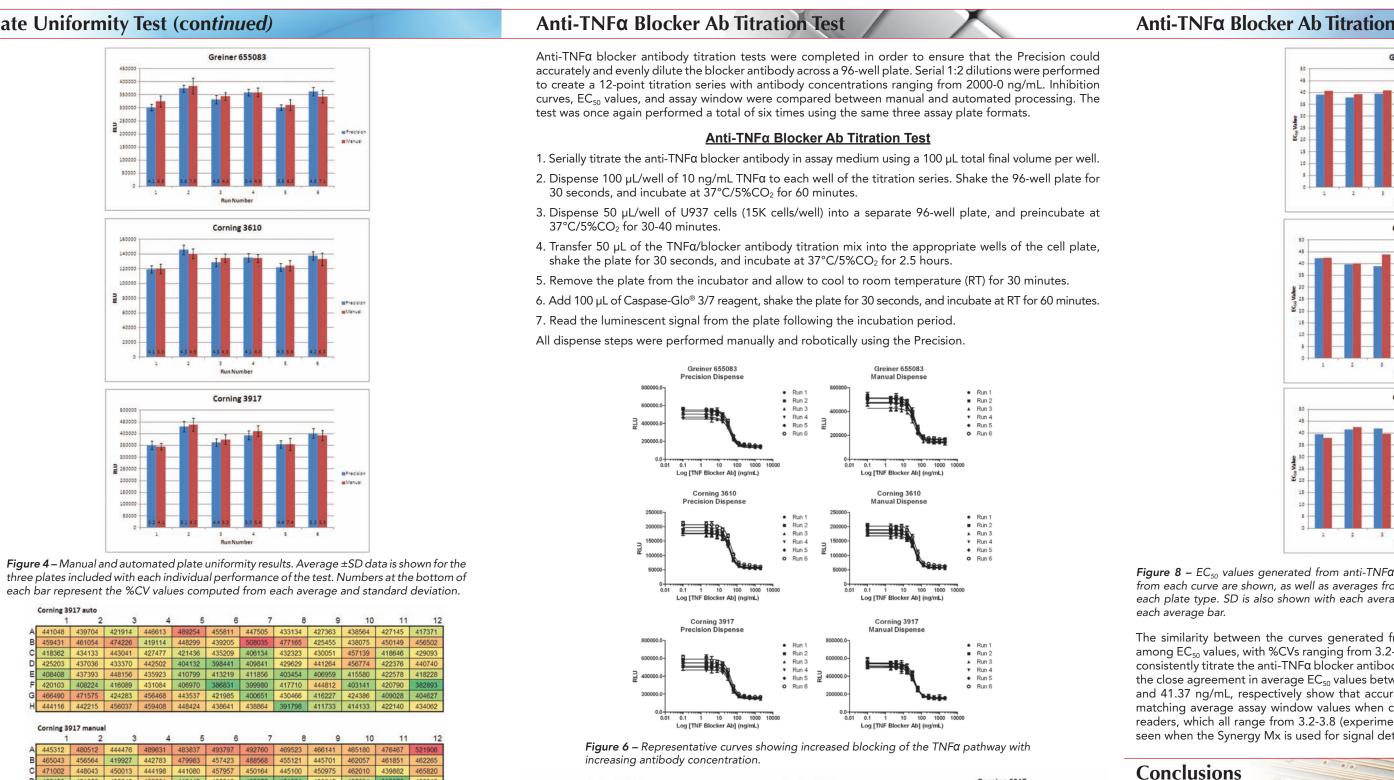




Figure 2 – The Precision[™] Microplate Pipetting System combines an 8-channel pipetting head and an 8-channel bulk reagent dispenser in one instrument. The instrument was used to dispense U937 cells. serially titrate antibody across a 96-well PP plate, transfer samples from plate to plate, as well as for TNF α and reagent dispensing.

	1	2	3	4	5	
A	441048	439704	421914	446613	489254	4558
в	459431	461054	474226	419114	448299	43920
2	418362	434133	443041	427477	421436	43520
þ	425203	437036	433370	442502	404132	39844
	408408	437393	448156	435923	410799	4132
=[420103	408224	416089	431084	406970	38683
3	466490	471575	424283	456468	443537	4219
ł	444116	442215	456037	459408	448424	43864

	Corning 39	17 manual	3	4	5	
A	445312	480512	444476	489631	483837	49379
В	465043	456564	419927	442783	479983	45742
C	471002	448043	450013	444198	441080	45795
D	422133	431628	435848	450261	419442	43551
E	428545	423633	414050	423123	417701	41133
F	469962	456218	429084	423300	427396	43348
G	423581	413620	387995	433382	412383	43590
н	419741	390193	389331	405759	427120	43881

Figure 5 – Raw luminescence values from robotically and manually dispensed plates from a single performance of the test, using Corning 3917 plates.

The low %CV values obtained through automated dispensing (from 3.4-5.2%) and the lack of any discernible negative dispensing pattern among all plate types tested, demonstrate the ability of the Precision to consistently and evenly dispense the assay components in 96-well format. Also, compared to the %CV values obtained from manual pipetting (from 4.0-7.9%) by an experienced pipetter familiar with the assay, the %CVs of the automated system show a slight improvement; indicative of a more robust assay procedure. The lower luminescence values seen with the Corning 3610 can be attributed to the clear well bottom of this plate, while the other two plates have solid white well bottoms, which increases the luminescence signal from the wells.

Plate Uniformity Test

The goal of the plate uniformity study was to ensure that the cells, known ligand, blocker antibody, and detection reagent used in the assay could be consistently dispensed across a 96-well assay plate in an automated fashion. Manual dispensing was also performed as a control for comparison purposes. The test was independently performed a total of 6 times, using three different white 96-well plate types (Corning 3610, Corning 3917, and Greiner 655083). Average, standard deviation (SD), and %CV were computed for the 96 replicates tested on each microplate.

Plate Uniformity Test Method

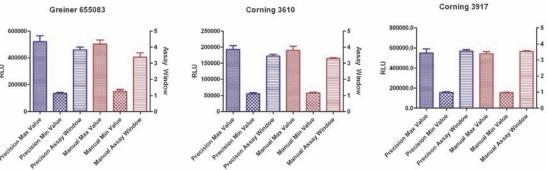
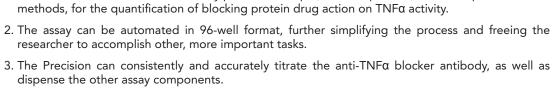
- Manually dispense 200 μ L/well of 2.5 ng/mL TNF α + 40 ng/mL anti-TNF α blocker antibody mix into the appropriate wells of a 96-well plate, and preincubate at 37°C/5%CO₂ for 60 minutes.
- Dispense 50 µL/well of U937 cells (15K cells/well) into a separate 96-well plate, and preincubate at 37°C/5%CO₂ for 30-40 minutes.
- Transfer 50 μ L of the 2.5 ng/mL TNF α + 40 ng/mL anti-TNF α blocker antibody mix into each well of the cell plate, shake the plate for 30 seconds, and incubate at 37°C/5%CO₂ for 2.5 hours.
- Remove the plate from the incubator and allow to cool to room temperature (RT) for 30 minutes
- Add 100 μ L of Caspase-Glo[®] 3/7 reagent, shake the plate for 30 seconds, and incubate at RT for 60 minutes.
- Read the luminescent signal from the plate following the incubation period.

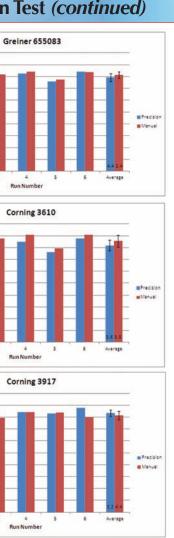
All dispensing steps, except for step 1 of the Plate Uniformity Test, were performed manually, and robotically, using the Precision.

BioTek Detection

each assay well

Figure 3 – The Synergy™ MX is a monochromator-based multi-mode A dedicated microplate reader. uminescence detection system is used to quantify the luminescent signal from


Figure 7 – Average maximum and minimum signal, as well as assay window shown for the six manual and automated runs performed with each assay plate type. Error bars represent the SD for each average value.

Anti-TNFα Blocker Ab Titration Test (continued)

- 4. The Synergy Mx is able to easily and correctly quantify the luminescent signal from assay wells using each plate type tested.
- 5. The low %CV values seen in the plate uniformity test, as well as similarity in blocking curves and EC_{50} values seen in the antibody titration test, demonstrate that the automated bioassay provides a complete, rugged solution to test potential biosimilars for their effectiveness in blocking TNF α activity.

1. The cell-based TNF α blocker bioassay provides a simple, efficient process, when compared to other