

Dual Dopant Approach for Simultaneous LC-APPI-MS/MS Analysis of Low and High Proton Affinity Pesticides

Sheng-Suan (Victor) Cai, Kaveh Jorabchi, and Jack Syage Syagen Technology, Inc., 1411 Warner Ave., Tustin, CA 92780

Introduction

Why Dual Dopants

- Low proton affinity analytes require a charge exchange
- High proton affinity analytes need a proton transfer dopant such as acetone, toluene or THF
- To maximize APPI sensitivity, dual dopants are needed for simultaneous analysis of both low and high proton affinity

On-Column Analyte Elution Profile ration purpose, a total of six pesticides are used. Three of h proton affinity compounds and the other three are low

Setup of Dopant Delivery Switch Valve

- For bluene delivery, set Rhoodyne valve in Toad" position
 Port 2 connected to a syringe or LO pump, and Port 3 connected to
 APPI source via auxiliary gas inlet.
 For chlorobenser delivery, set Rhoodyne valve in "Inject" position
 Port 6 connected to a syringe or LO pump, and Port 5 connected to
 APPI source via auxiliary gas inlet.
 Port 1 connected to a waste bottle and Port 4 connected to a purge line
 (capped in this work).

Instrument Parameters and Conditions

- Repeller Voltage: 1.5 kV stor: 1355 V, positive mod
- Column separation was performed using MeOH/water gradient elution: 10% to 100% MeOH in 10 min and hold. Mobile phase flow rate: 200 µL/min. LC Column: ACE 3 C18 100 x 2.1 mm.

LC-MS/MS Acquisition Parameters

Analyte ID		Precursor					Collision	Dwell
	Pesticide Name	Proton Affinity	Ion Type	RT (min)	MS/MS Transition	Capillary (V)	Energy (V)	Time (s)
					202.0 > 130.9	88	28.5	0.025
1	Thiabendazole	High	[M+H]*	11.463	202.0 > 175.0	88	22.5	0.025
					210.0 > 110.9	36	12	0.025
2	Propoxur	High	[M+H]*	12.139	210.0 > 168.0	36	7	0.025
					404.1 > 329.0	30	31.5	0.025
3	Azoxystrobin	High	[M+H]*	13.473	404.1 > 372.1	30	12	0.025
					248.0 > 127.0	60	29	0.025
4	Fludioxonil	Low	M*	13.844	248.0 > 182.2	60	18.5	0.025
					350.1 > 81.1	32	17	0.025
5	Propergite	Low	M*	15.999	350.1 > 201.0	32	9.5	0.025
					419.0 > 125.2	30	34.5	0.025
6	Fernyalerate	Low	M*	16.307	419.0 > 167.2	30	14	0.025

Limitations and Design Considerations

- A programmable dual dopant delivery system allows use of optimum dopants for specific analytes based on on-column elution profile/retention times and offers several capabilities/flexibilities for achievement of maximum APPI sensitivity. The following scenarios can be performed:

 I be af Dual Dopants (e.g., Loluene vs., chloroberzene); When high on column, dual dopants can be used such as toluene for polar compounds and chlorobenzene for nonpolar compounds.

 Use of No Dopant vs., Chlorobenzene: No dopant is used for polar compounds and chlorobenzenes is used for non-polar compounds and chlorobenzenes is used for non-polar compounds. The compounds and chlorobenzenes is used for non-polar compounds sensitivity. In this case, chlorobenzene suppresses polar compound sensitivity, in this case, chlorobenzene flow must be stopped.

 Adjustment of Dopant Elox Rates: An optimum dopant flow rate composition changes using a gradient elution. A programmable dopant delivery system offers varied flow rates for maximum sensitivity of specific compounds.

Acknowledgement

This research project is supported by US National Science Foundation (US NSF), Small Business Innovation Research (SBIR) Program.