

Treatment Options for Chronic Parvovirus Viremia in Pediatric Heart Transplant Patients in a Tertiary Care Center

R. Cruz*, C. Duff*, ²D. Krasnopero, ¹S. Joychan, ¹D. Lindsay, ¹D. Nieves, M. Ellison, ²Z. Long, ¹P. Sriaroon, ²A. Asante-Korang**, ¹J. E. Walter**

*shared first authors, ** shared senior authors

В.

Department of Pediatrics, ¹Division of Allergy and Immunology, University of South Florida St. Petersburg. Johns Hopkins All Children's Hospital, ²Cardiology 140 7th Ave S, St. Petersburg, FL 33701

Introduction

- L. Parvovirus Infections
- Parvovirus (B19) in humans was discovered in 1976
- Replicates in red blood cell precursors
- Parvovirus-specific IgM and IgG typically are able to control infection
- Common clinical manifestations:
 - -Immune-competent host: flu-like symptoms
 - erythema infectiosum
 - -Immune-deficient host: aplastic crisis myocarditis
- 2. Parvovirus Infections (PV) in cardiac transplant patients
- Pediatric heart transplant patients are often thymectomized and immunosuppressed
- Susceptible to infections such as parvovirus viremia
- Can be life threatening and compromise the transplanted heart
- First-line therapy is high dose IVIG treatment (HD IvIg) may not be:
 - -effective (e.g. persistent viremia)
 - -tolerated (e.g. adverse events such as aseptic meningitis)

Objectives

We aimed to:

- Describe patients with cardiac transplant and parvovirus viremia (PV)
- Describe how therapy was modified for patients with severe PV
- Identify risk factors for severe PV

Method

- Inclusion criteria: pediatric heart transplant patients with PV
- Retrospective medical record review regarding clinical presentation & treatment
- Laboratory evaluation:
- Immunoglobulin levels (IgG, IgM), T cell count (CD4 and CD8)

Results I.

We identified 3 patients with PV (clinical presentation, **Table 1**) with varying response to HD IvIg (**Table 2**)

Table 1. Clinical Presentation

Patient	Age	Cardiac Diagnosis	Cardiac Treatment	Lymphocyte levels
А	19	hypoplastic left heart syndrome	Heart Transplant and Thymecotmy	Severe T cell lymphopenia
В	7	pulmonary atresia with an intact ventricular septum	Heart Transplant and Thymectomy	Below average CD8 and CD4 counts
С	10	hypoplastic left heart syndrome	Heart Transplant and Thymectomy	Below average CD8 and CD4 counts

Table 2. Treatment response to HD Ig

Patient	Treatment	Response	
А	1. HD Ivlg 2. Sc Ig	 Viral load remained high (Figure 1A) & treatment caused severe aseptic meningitis Viral load dropped steadily (Figure 1A) & caused no side effects 	
В	1. HD lvlg	1. Responded well & viral load dropped (Figure 1B)	
С	1. HD Ivlg	1. Responded well & viral load dropped (Figure 1C)	

Figure 1. Viral Load at times of IgG Infusion

Figure 1. A-C Parvovirus viral load (copies/ml) detected in patients (A-C) during chronic viral infection treated by high dose IvIg (red arrow). **Figure 1** A. Distinction between IvIg treatment and subcutaneous route (Sc Ig).

Figure 2. CD8 & CD4 T cell counts

Figure 2E. P values between patients A & B **= 0.0012, ***= 0.0006 Figure 2D. P value between patients A & C.**= 0.0037

Results II.

- **Figure 1** summarizes the treatment course and parvovirus viral load in Patient A-C. Patient A had prolonged severe viremia against frequent HD lvlg treatment compared to Patient B and C with adequate response
- **Figure 1A** depicts the dramatic response in decrease in viral load after the introduction of subcutaneous Ig (ScIg) therapy
- Laboratory features: All patients suffer from varying degrees of T cell lymphopenia. CD4 and CD8 T lymphocyte levels are inversely correlated to parvovirus viral load (Figure 2)

Conclusions

Subcutaneous Ig for a patient with severe T cell lymphopenia and parvovirus infection:

- Controlled viremia
- Improved quality of life
- Decreased need for hospitalization and therefore cut healthcare costs