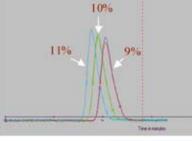

Recycling of CO₂ on a Supercritical Fluid Chromatography (SFC) Pilot Unit

Wieslaw Majewski, François Romelaer, Olivier Ludemann-Hombourger Novasep SAS - Site Eiffel, 81 Bld de la Moselle - BP50 - 54340 Pompey - France

Introduction

Except for analytical and semiprep instruments, eluent recycling after solute separation should be an ordinary feature of any supercritical fluid extraction and chromatographic equipment. But it should be stressed, that gaseous eluent from separators always contains some traces of solute and co-solvent, entrained as particles or vapor. Hence, in order to recycle the CO_2 and reuse it, the gas leaving the separators must be further purified. This purification step must provide clean CO_2 at the same pressure as a fresh fluid delivered from the supply unit (40 to 50 bar).

Practical Aspects


The purification of CO₂ is achieved in a gas scrubber. The system removes co-solvent and solute traces entrained from cyclonic separators. The remaining co-solvent dissolved in gaseous CO₂ is very low (< 0.3% under typical conditions) and is stable. Therefore, it has no influence on the chromatographic separation.

Impact on the Chromatograhy Separation

In SFC, even a small change in eluent composition typically conducts to a visible change in peak retention time.

Preparative chromatography involve multiple injections (10's to 1000's) and automatic collections of purified products. Therefore, any instability of the retention time would be detrimental to the purity and recovery yield. The performance of the recycling was demonstrated as shown in the figure on the right.

Conclusion: A perfect reproductibility is obtained at each CO_/co-solvent composition tested.

Overlay of 3 pairs of chromatograms obtained with 3 co-solvent contents

SuperSep™: A compact SFC unit Capacity: kg(s) of product/day

Recycling the CO_2 reduces the required quantities of fresh CO_2 necessary for semi-prep to preparative separation by 10 to 20 times. This can be easily translated by the reduction of the dimension of the CO_2 furniture, and therefore **the reduction of the capital expenditure** and the logistics

Impact on the solvent consumption

System Type Column Size	HPLC 80 mm l.D.	SFC 50 mm I.D.	SFC 50 mm l.D.
Productivity (kg product/day/kg CSP)	0.240	2.2	2.2
Organic Solvent (L/kg of feed)	3100 (n-heptane/IPA 98/2)	352 (IPA+DMEA)	352 (IPA+DMEA)
CO_2 consumption (kg/kg of feed)	NA	1700 (Without CO ₂ recycling)	170 (With CO ₂ recycling)
Productivity (time to purify 1 kg)	100 h	36 h	36 h
Manufacturing cost comparaison (on hundred basis)	100	49	8.8

Separation of cyclopenta [b] Indol Amino derivative (B.Bonnier -R&D Sr Scientist, Eli Lilly, Belgium)

Conclusion

SFC is a powerful separation tool to all chemists. With CO₂ as eluent, SFC separates fast, and well.

The advantages of the technique are:

- High productivity
- Low amounts of organic solvents (5 to 20 times less than HPLC)
- Concentrated purified products (Size reduction of evaporators)
- Decrease of global investments

What does CO₂ recycling bring to your SFC?

Reduction of CO₂ storage dimensions

- Reduction of operating costs
- Reduction of the risks associated with large CO₂ volumes

Series of injections of chiral API

involved