We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

A Step in the Right Direction for Artificial Photosynthesis

Close up of a leaf with water droplets on the surface and light shining on it.
Credit: 41330, Pixabay.
Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 1 minute

To synthesize hydrocarbon via sunlight, CO2, and water is commonly seen in the nature, especially amongst plant kingdom, but remains a challenging and inviting issue in science amidst growing interest in pursuing new and clean energy. Recently, a research team led by Prof. XIONG Jieyu from the University of Science and Technology of China (USTC) reports a broadband plasmon-induced CO2 reduction reaction, which achieves a CH4 production rate of 0.55mmol g-1 h-1 with 100% selectivity to hydrocarbon products. The work is published in Nature Communications.


Artificial photosynthesis seems to usher in a promising energy future bypassing the exhaustion of coal and oil resources. The method has been studied for many years and gets stuck in the low utilization efficiency of low-energy photons, especially near-infrared photons. A mass of semiconductors and metal nanocatalysts have been studied to solve the problem. Among them, plasmonic metal nanoparticles have proved their capacity in absorbing low-energy photons but fail in energy coupling into the reactant molecules.

Want more breaking news?

Subscribe to Technology Networks’ daily newsletter, delivering breaking science news straight to your inbox every day.

Subscribe for FREE

Researchers in Prof. XIONG Jieyu’s team focused on solar-to-chemical energy conversion and optimized the system by employing versatile co-catalysts to establish an effective bridge for transferring hot carriers from plasmonic materials into reactant molecules. They found that the localized electric field could lead to the emergence of a new isolated state above the Fermi energy and the differentiation of electron transfer within different molecular orbitals, thus enabling such a unique artificial photosynthesis process. Through their method, they have eventually achieved an extraordinary CH4 production rate of 0.55 mmol g-1 h-1 via a gas-solid biphase system, which successfully hits a record high.


The work breaks the long-standing block and proves the viability of low-energy photon utilization and utilization efficiency improvement of the solar spectrum. Also, it provides a riveting picture of the potential of plasmon-induced catalysis toward achieving broadband artificial photosynthesis and makes artificial photosynthesis move further towards techno-economic applications.


Reference: Xiao X, Zhang Z, Tan P. Unveiling the mysteries of operating voltages of lithium-carbon dioxide batteries. PNAS. 2023;120(6):e2217454120. doi:10.1073/pnas.2217454120



This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.