We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

Catalyst Could Improve Conversion of Waste CO2 to Useful Formate

CO<sub>2</sub> molecules floating in the sky.
Credit: Malte Reimold/ Pixabay
Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 1 minute

Hydrogenation of carbon dioxide (CO2) to formate, an important chemical widely used in leather, textile, mining industry, etc., is an attractive atom-economic route for the utilization of this greenhouse gas.


Non-precious metal-based catalysts for the CO2 hydrogenation to formate suffered from either low activity or low stability. It's still a challenge to develop low-cost and high-performance catalysts for CO2 hydrogenation to formate.


Recently, a research group led by Prof. DENG Dehui from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences (CAS) developed an edge-rich molybdenum disulfide (ER-MoS2) catalyst for CO2 hydrogenation to formate with superior activity and high stability.

Want more breaking news?

Subscribe to Technology Networks’ daily newsletter, delivering breaking science news straight to your inbox every day.

Subscribe for FREE

The study was published in Angew. Chem. Int. Ed. on July 20 and was selected as hot paper and inside back cover.


In this study, the ER-MoS2 with abundant edges delivered a high TOF of 780.7 h-1 with formate selectivity of over 99% at 200 °C, and exhibited a good stability.


Multiple experimental characterizations combined with theoretical calculations revealed that sulfur vacancies at MoS2 edges were the active sites and the selective production of formate was enabled via a new water-mediated hydrogenation mechanism, in which surface OH* and H* species from H2O dissociation on the edge-sulfur vacancies served as moderate hydrogenating agents with residual O* reduced by H2.


"This work opens new avenue for developing low-cost non-noble metal catalysts for the hydrogenation of CO2 to formate and the revealed water-mediated reaction mechanism also provides insights for designing MoS2-based catalysts for selective hydrogenation reactions," said Prof. DENG.


Reference: Wang Z, Kang Y, Hu J, et al. Boosting CO2 hydrogenation to formate over edge-sulfur vacancies of molybdenum disulfide. Angew. Chem. Int. Ed. 2023:e202307086. doi: 10.1002/anie.202307086


This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.