We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
Comparison of Caffeinated and Decaffeinated Coffee - Implications for Alzheimer's Disease
News

Comparison of Caffeinated and Decaffeinated Coffee - Implications for Alzheimer's Disease

Comparison of Caffeinated and Decaffeinated Coffee - Implications for Alzheimer's Disease
News

Comparison of Caffeinated and Decaffeinated Coffee - Implications for Alzheimer's Disease

Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Comparison of Caffeinated and Decaffeinated Coffee - Implications for Alzheimer's Disease"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Abstract
Findings from epidemiology, preclinical and clinical studies indicate that consumption of coffee could have beneficial effects against dementia and Alzheimer's disease (AD). The benefits appear to come from caffeinated coffee, but not decaffeinated coffee or pure caffeine itself. Therefore, the objective of this study was to use metabolomics approach to delineate the discriminant metabolites between caffeinated and decaffeinated coffee, which could have contributed to the observed therapeutic benefits. Gas chromatography time-of-flight mass spectrometry (GC-TOF-MS)-based metabolomics approach was employed to characterize the metabolic differences between caffeinated and decaffeinated coffee. Orthogonal partial least squares discriminant analysis (OPLS-DA) showed distinct separation between the two types of coffee (cumulative Q2 = 0.998). A total of 69 discriminant metabolites were identified based on the OPLS-DA model, with 37 and 32 metabolites detected to be higher in caffeinated and decaffeinated coffee, respectively. These metabolites include several benzoate and cinnamate-derived phenolic compounds, organic acids, sugar, fatty acids, and amino acids. Our study successfully established GC-TOF-MS based metabolomics approach as a highly robust tool in discriminant analysis between caffeinated and decaffeinated coffee samples. Discriminant metabolites identified in this study are biologically relevant and provide valuable insights into therapeutic research of coffee against AD. Our data also hint at possible involvement of gut microbial metabolism to enhance therapeutic potential of coffee components, which represents an interesting area for future research.

The article, Gas Chromatography Time-Of-Flight Mass Spectrometry (GC-TOF-MS)-Based Metabolomics for Comparison of Caffeinated and Decaffeinated Coffee and Its Implications for Alzheimer's Disease, is published online in PLoS ONE and is free to access. 

Advertisement