We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Crystallography Used to Analyse Fossils and Assign them to Microscopic Organisms

Crystallography Used to Analyse Fossils and Assign them to Microscopic Organisms

Crystallography Used to Analyse Fossils and Assign them to Microscopic Organisms

Crystallography Used to Analyse Fossils and Assign them to Microscopic Organisms

The image shows a thin section of a fossilised organism, which has not yet been able to be assigned to a particular species. FAU researchers have examined the samples using a method derived from materials science. The coloured fields are individual crystals, the colour shows their crystallographic orientation. Credit: https://www.frontiersin.org/articles/10.3389/feart.2018.00016/abstract).
Read time:

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Crystallography Used to Analyse Fossils and Assign them to Microscopic Organisms"

First Name*
Last Name*
Email Address*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Blue-green algae are one of the oldest organisms in the world and have an important role to play in many ecosystems on Earth. However, it has always been difficult to identify fossils as blue-green algae without any trace of doubt. The reason is their unremarkable sheath made of calcium carbonate. A Master’s student at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) has now developed a method which can help assign organisms to a particular species.

Most organisms which once lived on Earth have become extinct. Not only individual species, but entire families and broader groups of species have disappeared forever, often leaving only very sparse information about their life and their biology. Researchers often find puzzling fossils they cannot allocate to any known group, especially dating from the period when many groups of organisms first evolved. Such microscopic organisms are often classed as blue-green algae, as on the surface they resemble the microscopic calcium carbonate sheaths of the algae. Blue-green algae are one of the oldest organisms on Earth and play a fundamental role in many marine and terrestrial ecosystems, for example by performing intensive photosynthesis or as food for a number of animals. In spite of their significance, little is known about their evolution, as their fossils are virtually shapeless tubes or bubbles of carbonate. It has therefore proved very difficult for researchers to determine whether fossils belong to blue-green algae or a completely different group of organisms.

Working together with a team of researchers from FAU, Jan-Filip Päßler, a Master’s student in Palaeobiology at FAU, has examined the crystallography of fossil structures using methods derived from materials science. Päßler compared carbonate fossils, so-called trilobites, with two microfossils which had not yet been able to be assigned, but which were extremely common in the oceans approximately 400 million years ago. He based his comparison on the observation that biologically formed carbonate structures have a very specific pattern. What is more, organisms form their skeletons in different ways – and these differences become apparent in the way crystals are arranged in the carbonate. Researchers were not only able to measure the direction in which crystals grew, but also misorientations between adjacent crystals. They found that in blue-green algae the crystals follow a less structured pattern with many misorientations. Trilobites, however, have an ordered structure with fewer misorientations. According to Päßler’s supervisor, Dr. Emilia Jarochowska, ‘our approach can be used in future to clarify the biological relationships between many other mysterious fossils in geological history’.

This article has been republished from materials provided by the University of Erlangen-Nuremberg. Note: material may have been edited for length and content. For further information, please contact the cited source.

Jan-Filip Päßler, Emilia Jarochowska, Michel Bestmann, Axel Munnecke. Distinguishing Biologically Controlled Calcareous Biomineralization in Fossil Organisms Using Electron Backscatter Diffraction (EBSD). Frontiers in Earth Science, 2018; 6 DOI: 10.3389/feart.2018.00016.