We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Easy Separation Method for Important Protein Oxidation Studies

Easy Separation Method for Important Protein Oxidation Studies

Easy Separation Method for Important Protein Oxidation Studies

Easy Separation Method for Important Protein Oxidation Studies

Credit: Pixabay.
Read time:

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Easy Separation Method for Important Protein Oxidation Studies"

First Name*
Last Name*
Email Address*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Proteins are made up of long chains of amino acids, and most proteins have one or more of the sulfur-containing amino acid methionine. Oxidation of the sulfur atom in methionine is an important biomolecular reaction that can have a wide range of biological consequences depending on the context and the protein involved.

Interestingly, the sulfur oxidation of methionine can give rise to two different versions of the oxidized molecule (methionine sulfoxide) differing only in the 3-dimensional spatial arrangement of its atoms. The two versions are called stereoisomers (or, more precisely, diastereomers, which are stereoisomers that are not mirror images). Researchers studying the biological effects of sulfur oxidation would like to be able to separate the two stereoisomers, but this has been extremely difficult to do.

Now, chemists at UC Santa Cruz have reported a new method for separation of methionine sulfoxide diastereomers that opens up new opportunities for studying their roles in biological processes. In a paper published April 6 in Chemistry, A European Journal, they reported obtaining both stereoisomers in purities exceeding 99%.

“The field of methionine oxidation has been hampered for decades by a lack of robust access to these reagents, and we believe this will be a tremendous boost,” said first author Jevgenij Raskatov, assistant professor of chemistry and biochemistry at UC Santa Cruz.

Raskatov’s lab collaborated with researchers at the California Institute of Technology on the paper, which was featured on the cover of the journal. Raskatov said he has already heard from other researchers in the field who are interested in the new method.

Raskatov’s team used an advanced chromatography technique called supercritical fluid chromatography to purify the methionine sulfoxide stereoisomers. Supercritical fluids have the properties of both liquids and gases, which can be very useful in chromatography. The researchers also analyzed the structures of the purified stereoisomers using x-ray crystallography and confirmed their remarkable stereochemical stability.


Jevgenij A. Raskatov, Scott Virgil, Hsiau‐Wei Lee, Lawrence M. Henling, Ka Chan, Ariel J. Kuhn, Alejandro R. Foley. A Facile Method for the Separation of Methionine Sulfoxide Diastereomers, Structural Assignment, and DFT Analysis. Chemistry – A European Journal, 2020; 26 (20): 4467 DOI: 10.1002/chem.201904848.

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.