We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.


Enhancing the Luminescence of Core-Shell Lanthanide-Doped Nanocrystals

Enhancing the Luminescence of Core-Shell Lanthanide-Doped Nanocrystals content piece image
Credit: Edinburgh Instruments
Listen with
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 1 minute

Researchers at the University of California at Berkeley and Lawrence Berkeley National Laboratory, have demonstrated a mechanism that exploits surface quenching processes to magnify the luminescence of core-shell lanthanide-doped nanocrystals. This work, lead authored by Dr. Stefan Fischer conducting research under Prof. A. Paul Alivisatos, the Samsung Distinguished Chair in Nanoscience and Nanotechnology Research at Berkeley, precisely tuned the shell thickness around upconversion and downconversion b-NaYF4 and Yb, Er nanoparticles with undoped b-NaLuF4 shells. This was done to quantify, understand, and enhance the luminescence properties associated with optimizing surface quenching through spectral and lifetime analysis.

Upconversion and downconversion nanocrystals have been shown for their unique ability to shift wavelengths of light to higher or lower energies based on the lanthanide dopants and crystal host, with broad applications in quantum cutting, securities, biomedical imaging, and novel light emitting diodes, to name a few. For this study, the researchers exploited an Edinburgh FLS980 Luminescence Spectrometer coupled to an Opotek Opolette laser to acquire spectral and lifetime properties of the enhanced upconversion and downconversion mechanism of these shell-enhanced lanthanide-doped nanocrystals.

Dr. Stefan Fischer said, “The Edinburgh FLS980 allowed us to look at the time-dependent dynamics of every single transition of Er3+ and Yb3+ in our nanocrystals on a very reproducible and quantitative level which eventually enabled us to derive surface quenching rates for every energy level involved in the complex up- and downconversion mechanism. This enhanced understanding of the system’s dynamics allowed us to model a novel surface quenching assisted downshifting mechanism with a distinctive peak for a certain thickness of the inert shell. This distinctive peak is a result of the interplay between the different surface quenching rates which we have determined by exploiting the sensitivity of the FLS980 over a broad spectral range from the UV to the NIR.

Fischer, S., Bronstein, N. D., Swabeck, J. K., Chan, E. M., & Alivisatos, A. P. (2016). Precise tuning of surface quenching for luminescence enhancement in Core–Shell Lanthanide-Doped Nanocrystals. Nano Letters, 16(11), 7241–7247. doi:10.1021/acs.nanolett.6b03683

This article has been republished from materials provided by Edinburgh Instruments. Note: material may have been edited for length and content. For further information, please contact the cited source.