We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

Finding the Good in Things

Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 1 minute

Researchers from Kanazawa University report in Sensors and Actuators B: Chemical the application of a portable and efficient method for the on-site analysis of wastewaters for the quantitative analysis of their gold, platinum and palladium content.

Precious metals come in limited supply but are in high demand. They are mainly sourced through mining, but the possibility of recycling them from metallurgical waste leachates (waters that have passed through the treated materials during mineral processing and thus contain some of the compounds present in the minerals) is attracting growing attention. To this end, compact and portable instruments to perform the analysis of wastewaters in on-field rapid analysis are highly desirable to improve the efficiency of the recovery of precious metals.


Liquid-electrode plasma–optical emission spectrometry (LEP–OES) has emerged as a tool to implement on-site analysis of elements in aqueous matrices, as it is portable and much less costly than traditional methods. However, when the concentration of noble metals is very low, as is the case for precious metals in waste spills, the sensitivity of the technique become insufficient to produce accurate analysis — one of the problems is that in metallurgical waste leachates there are several ions that interfere with the analysis. In this case, analyte separation and enrichment steps (that is, steps that remove other substances and increase the concentration of the analyte to make detection easier) have to be included in the analysis of the samples for accurate detection of the precious metals.


This is what Suman Barua, Ismail M.M. Rahman, Hiroshi Hasegawa and colleagues from Kanazawa University and Fukushima University did, reporting the first application of LEP-OES in combination with a solid-phase extraction (SPE) system (which is used as the pre-treatment step to eliminate the competing ions and to enrich the noble metals) for the rapid on-site simultaneous analysis of the precious metals gold, palladium and platinum. The SPE parameters were optimized to maximize retention and recovery of the precious metals; the LEP-OES parameters to maximize the emission peaks for the individual elements. The method was tested both on certified reference material for wastewater and on real aqueous waste samples, from which more than 95% of the precious metals were recovered. The high-precision on-site measurements could be performed in less than 15 minutes, opening the way to practical analysis of the precious metal content of wastewaters.

This article has been republished from materials provided by Kanazawa University. Note: material may have been edited for length and content. For further information, please contact the cited source.

Reference
Suman Barua, Ismail M.M. Rahman, Maho Miyaguchi, Asami S. Mashio, Teruya Maki, Hiroshi Hasegawa. On-site analysis of gold, palladium, or platinum in acidic aqueous matrix using liquid electrode plasma-optical emission spectrometry combined with ion-selective preconcentration. Sensors and Actuators B: Chemical, 2018; 272: 91 DOI: 10.1016/j.snb.2018.05.132.