We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Laser-Driven Electron Re-collision Remembers Molecular Orbital Structure

Laser-Driven Electron Re-collision Remembers Molecular Orbital Structure

Laser-Driven Electron Re-collision Remembers Molecular Orbital Structure

Laser-Driven Electron Re-collision Remembers Molecular Orbital Structure

Credit: The Max Born Institute.
Read time:

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Laser-Driven Electron Re-collision Remembers Molecular Orbital Structure"

First Name*
Last Name*
Email Address*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Scientists from the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI) in Berlin combined state-of-the-art experiments and numerical simulations to test a fundamental assumption underlying strong-field physics. Their results refine our understanding of strong-field processes such as high harmonic generation (HHG) and laser-induced electron diffraction (LIED). The results have been published in “Science Advances”.

Strong infrared laser pulses can extract an electron from a molecule (ionization), accelerate it away into free space, then turn it around (propagation), and finally collide it with the molecule (recollision). This is the widely used three-step model of strong-field physics. In the recollision step, the electron may, for example, recombine with the parent ion, giving rise to high harmonic generation, or scatter elastically, giving rise to laser-induced electron diffraction.

One of the commonly used assumptions underlying attosecond physics is that, in the propagation step, the initial structure of the ionized electron is “washed out”, thus losing the information on the originating orbital. So far, this assumption was not experimentally verified in molecular systems.

A combined experimental and theoretical study at the Max-Born Institute Berlin investigated the strong-field driven electron recollision dynamics in the 1,3-trans-butadiene molecule. In this molecule, the interaction with the strong laser field leads mainly to the ionization of two outermost electrons exhibiting quite different densities, see Figure 1. The state-of-the-art experiments and simulations then allowed the scientists to measure and calculate the high-angle rescattering probability for each electron separately. These probabilities turned out to be quite different both in the measurements and in the simulations. These observations clearly demonstrate that the returning electrons do retain structural information on their initial molecular orbital.

This article has been republished from materials provided by Forschungsverbund Berlin. Note: material may have been edited for length and content. For further information, please contact the cited source.

Molecular orbital imprint in laser-driven electron recollision. Felix Schell, Timm Bredtmann, Claus Peter Schulz, Serguei Patchkovskii, Marc J. J. Vrakking, Jochen Mikosch. Science Advances, 2018, Vol. 4, No. 5, DOI: 10.1126/sciadv.aap8148.