We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
Levitating Particles Could Raise Nuclear Detective Work
News

Levitating Particles Could Raise Nuclear Detective Work

Levitating Particles Could Raise Nuclear Detective Work
News

Levitating Particles Could Raise Nuclear Detective Work

November 7, 2018 Los Alamos scientists Alexander Malyzhenkov and Alonso Castro demonstrate levitating uranium particles with laser beams. Los Alamos scientists Alexander Malyzhenkov and Alonso Castro demonstrate levitating uranium particles with laser beams. Credit: Los Alamos National Laboratory.
Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Levitating Particles Could Raise Nuclear Detective Work"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Laser-based ‘optical tweezers’ could levitate uranium and plutonium particles, thus allowing the measurement of nuclear recoil during radioactive decay. This technique, proposed by scientists at Los Alamos National Laboratory, provides a new method for conducting the radioactive particle analysis essential to nuclear forensics.

“Our idea relies on trapping a particle using ‘optical tweezers,’ a technique which is the subject of this year’s Nobel prize in Physics,” said Alonso Castro of the Lab’s Actinide Analytical Chemistry group, one of the authors of a new paper in the journal Physical Review A. “It is only fitting that [Nobel prize winner] Arthur Ashkin’s invention is still yielding novel science even after 30 years.”


The team’s work shows that, for micrometer and sub-micrometer particles, the kinetic energy of the emitted nuclear particle, or daughter particle, can be determined very accurately by measuring the recoil of the sample particle levitated in a laser-powered optical trap. The sample particle fully absorbs the recoil momentum of the daughter atom resulting in a well-defined oscillation in the harmonic potential of the trap.


“For applications such as nuclear forensic analysis, this technique could have significant value. Thus far, we have been able to hold uranium particles in optical traps, and we find that holding them in place, with their oscillation energy ‘cooled,’ gives us the opportunity to see the recoil when the daughter atom’s motion causes displacement of the sample,” said Castro.


“The next step would be to measure those displacements and then calculate the energy of the recoil. The impact of our approach is that it can very quickly determine the isotopic composition of the types of nanometer and micrometer-sized particles found in nuclear forensic scenarios,” he said.


Nuclear forensics is the examination of nuclear and other radioactive materials to determine the origin and history of the materials in the context of law enforcement investigations or the assessment of nuclear security vulnerabilities. Los Alamos conducts a wide range of nuclear forensic science in support of the Laboratory’s national security mission.

This article has been republished from materials provided by Los Alamos National Laboratory. Note: material may have been edited for length and content. For further information, please contact the cited source.

Reference
Nuclear recoil spectroscopy of levitated particles, by Alexander Malyzhenkov, Vyacheslav Lebedev, and Alonso Castro, Physical Review A, November 2018. DOI 10.1103/PhysRevA.98.052103.

Advertisement