We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Lighting Up A New Path For Novel Synthetic Polio Vaccine

Lighting Up A New Path For Novel Synthetic Polio Vaccine

Lighting Up A New Path For Novel Synthetic Polio Vaccine

Lighting Up A New Path For Novel Synthetic Polio Vaccine

Read time:

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Lighting Up A New Path For Novel Synthetic Polio Vaccine"

First Name*
Last Name*
Email Address*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Scientists from the UK and USA are using technology that helped in the design of a new synthetic vaccine to combat the foot and mouth disease virus (FMDV) to now target the virus that causes polio. The novel vaccine would provide a powerful weapon in the fight to rid the world of polio, and this project is being funded by a £438,000 grant from the World Health Organisation and the Bill & Melinda Gates Foundation.

The synthetic vaccine is currently being engineered in collaboration with Prof Dave Stuart at Diamond Light Source and the University of Oxford, and Prof. Dave Rowlands and Dr Nic Stonehouse at the University of Leeds. The project is also supported by the work of Prof Ian Jones at the University of Reading, Drs Andy Macadam and Phil Minor at the National Institute for Biological Standardisation and Control (NIBSC), and Prof George Lonossoff at the John Innes Institute.

The team’s hope is to create a vaccine that does not contain the viral genome but instead ‘mimics’ the structure of the live virus. Such a vaccine would be quicker, easier and safer to produce. Even after the apparent global elimination of poliomyelitis it will be necessary to continue vaccination as a precaution against reintroduction of the virus from hidden sources, such as rare chronically infected carriers. A synthetic vaccine would fulfil this role without the inherent danger of accidental release of virus associated with the production of current vaccines. Eventually such vaccines could pave the way to completely eliminating the necessity to vaccinate.

Speaking at the American Association for the Advancement of Science (AAAS 2015) meeting in San Jose on the 13th February 2015, Prof Dave Stuart, Life Sciences Director at Diamond Light Source, the UK’s national synchrotron science facility, and Professor of Structural Biology at Oxford University, explains: “Using a combination of techniques, including X-ray crystallography at Diamond and electron cryo-microscopy in Oxford, we’ve begun the task of gathering crystal structures and electron microscopy images that will tell us what we need to know to stabilise the shell of the virus and engineer a strong vaccine that has the ability to bring about the desired immune response in humans.”

“Following on from the success we’ve had with the foot and mouth disease vaccine, we aim to transfer the approach to vaccines for other viruses including polio. Early results with polio are very promising, with synthetic particles being produced and evidence of successful stabilisation.”

Prof Stuart has devoted his career as a structural biologist to outsmarting viruses to benefit human and animal health. 21st Century technology will, he believes, play a key role in helping us to dramatically improve our response times when new virus outbreaks occur. He adds, “Our basic research capabilities are being greatly enhanced by developments in a number of key areas such as synchrotron light sources, light microscopy and the now fantastically powerful electron microscopy technique.”

“Using the latest technology, we can engineer vaccines that are billions of times smaller than a pinhead, we can track viruses as they interact with living cells, and we can glean the detailed information required to look at pathogens and then design better therapies against them. At the same time, out in the field, we can have DNA sequencers that can aid gene sequencing and help speed up the process of designing new synthetic vaccines with the added advantage of not having to send deadly virus samples around the world.”

Scientists working on the next generation of vaccines and inhibitors to combat viruses and bacterial infections will have their research capabilities greatly enhanced when the UK’s new Electron Bio-Imaging Centre (eBIC) opens in late 2015. Conveniently located next to Diamond’s synchrotron building, the centre’s powerful cryo-electron microscopes will allow scientists to visualise the structure of the cell to help further understand molecular make-up and will provide new tools to image single bio-molecules.

The new centre will offer the imaging approaches of single particle analysis of biological macromolecules and cellular tomography, as well as electron crystallography. These techniques will complement the atomic mapping possible with the established macromolecular crystallography beamlines. Additional capabilities coming online in the future are elemental mapping in cells provided by the X-ray nanoprobe and the larger scale cell imaging capability of the new Full Field Cryo Transmission X-ray Microscope (cryo-TXM).

These complementary new facilities are expected to draw scientists from around the world, and establish the nation’s synchrotron as a hub of world-leading research into disease prevention.