We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Longstanding Mystery Solved by Dancing Electrons

Longstanding Mystery Solved by Dancing Electrons

Longstanding Mystery Solved by Dancing Electrons

Longstanding Mystery Solved by Dancing Electrons

Credit: Pixabay
Read time:

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Longstanding Mystery Solved by Dancing Electrons"

First Name*
Last Name*
Email Address*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Magnetite is the oldest magnetic material known to humans, yet researchers are still mystified by certain aspects of its properties.

For example, when the temperature is lowered below 125 kelvins, magnetite changes from a metal to an insulator, its atoms shift to a new lattice structure, and its charges form a complicated ordered pattern. This extraordinarily complex phase transformation, which was discovered in the 1940s and is known as the Verwey transition, was the first metal-insulator transition ever observed. For decades, researchers have not understood exactly how this phase transformation was happening.

According to a paper published in Nature Physics, an international team of experimental and theoretical researchers discovered fingerprints of the quasiparticles that drive the Verwey transition in magnetite. Using an ultrashort laser pulse, the researchers were able to confirm the existence of peculiar electronic waves that are frozen at the transition temperature and start “dancing together” in a collective oscillating motion as the temperature is lowered.

“We were investigating the mechanism behind the Verwey transition and we suddenly found anomalous waves freezing at the transition temperature” said MIT physics postdoc Edoardo Baldini, one of the lead authors on the paper. “They are waves made of electrons that displace the surrounding atoms and move collectively as fluctuations in space and time.”

This discovery is significant because no frozen waves of any kind had ever been found in magnetite. “We immediately understood that these were interesting objects that conspire in triggering this very complex phase transition,” says MIT physics PhD student Carina Belvin, the paper’s other lead author.

These objects that form the low-temperature charge order in magnetite are “trimerons,” three-atom building blocks. “By performing an advanced theoretical analysis, we were able to determine that the waves we observed correspond to the trimerons sliding back and forth,” explains Belvin.

“The understanding of quantum materials such as magnetite is still in its infancy because of the extremely complex nature of the interactions that create exotic ordered phases,” adds Baldini.

The researchers suggest that the larger significance of this finding will impact the field of fundamental condensed matter physics, advancing the comprehension of a conceptual puzzle that has been open since the early 1940s. This work, led by MIT professor of physics Nuh Gedik, was made possible by the use of “ultrafast terahertz spectroscopy,” an advanced laser apparatus based on ultrashort pulses in the extreme infrared. Gedik says, “These laser pulses are as short as one millionth of one millionth of a second and allow us to take fast photographs of the microscopic world. Our goal now is to apply this approach to discover new classes of collective waves in other quantum materials.”


Author et al. (2020) Article title. Journal title. DOI: https://doi.org/10.1016/j.trsl.2020.02.007

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.