New Chemical Synthesis Process: Synergy of Two Catalysts in One Flask
News Mar 15, 2018 | Original story from Kanazawa University

Credit: Kanazawa University
Most medications, agricultural chemicals and functional materials, indispensable for maintaining and improving our lives, are composed of organic molecules. Organic synthesis using a catalyst is the method for the rapid and large scale supply of such organic molecules without imposing a heavy burden on the environment. In this research field, Prof. Noyori in 2001 and Profs. Suzuki and Negishi in 2010 were awarded the Nobel Prize in Chemistry; Prof. Noyori, for "chirally catalyzed hydrogenation reactions," and Profs. Suzuki and Negishi, for "palladium-catalyzed cross-couplings."
In recent years, catalysts consisting of only organic molecules but without metal elements, i.e. organocatalysts, have been regarded to be next-generation catalysts, and have received much attention. However, some organic chemistry reactions cannot take place with a single catalyst. Many investigations have therefore been carried out on using two or more catalysts in a synergistic manner for organic synthesis, creating a new category in this research field. In the human body, for example, several catalysts (enzymes) work in a synergistic manner for synthesizing complex organic molecules that exert important functions. Likewise, organic synthesis could potentially be carried out by two or more catalysts in one flask. Nonetheless, it has been thought to be a difficult task to realize such catalytic systems because catalysts themselves react with each other in many cases to abolish their catalytic ability.
[Results]
The research team of Kanazawa University successfully synthesized a ketone from an aldehyde and a benzyl, or from an aldehyde and an allylic carbonate, by the synergistic action of an organocatalyst and a palladium catalyst in one flask (Figure 1). Thorough examination of the reaction conditions revealed the importance of thiazolium N-heterocyclic carbene as the organocatalyst and palladium with augmented activity by bisphosphine, an organic phosphorus compound, as the metal catalyst (Figure 2). It should be mentioned that no catalytic reactions were found to take place in the absence of either of the two catalysts, indicating that two catalysts are indispensable for such a reaction to take place.
Synthetic conversion of an aldehyde into a ketone by conventional methods required a complicated process with multiple chemical reaction steps or a metal reagent that would impose a substantial burden on the environment. The newly developed protocol, on the other hand, enables the synthesis of a ketone of complex chemical structure from an aldehyde under simple and mild conditions (Figure 3). The key to success is that the aldehyde, which is known to act as an electrophile in chemical reactions, in fact worked here as a nucleophile. Thus, the novel protocol enables the rapid and simple synthetic conversion of an aldehyde into a ketone, which is an important basic structure found in a variety of medications and medication candidate chemicals.
[Future prospects]
It was thought to be difficult for a transition metal catalyst and an organocatalyst to function in a synergistic manner in one flask with their individual functional activities maintained. The present study represents a milestone in this field. Furthermore, a novel design guideline has now been established in the field of "organic synthesis using catalysts." It is expected that, by changing the combination of catalysts to be employed, a variety of synthetic reactions that have so far been difficult could be developed, which should pave the way for new technologies for synthesizing medications and medication candidates in a simple and easy manner but without waste.
This article has been republished from materials provided by Kanazawa University. Note: material may have been edited for length and content. For further information, please contact the cited source.
RELATED ARTICLES
Artificial Leaf Acts as a Mini Medicine Factory
NewsUsing sunlight for sustainable and cheap production of, for example, medicines. The 'mini-factory' in the form of a leaf that was presented in 2016 showed that it is possible. Now researchers have come with an improved version: their 'mini-factory' is now able to keep production at the same level, irrespective of the variation in sunlight due to cloudiness or time of the day.
READ MORECompound Offers Pain-relief of Opioids Without Addictive Properties
NewsResearchers have engineered a new compound that animal tests suggest could offer the pain-relieving properties of opioids such as morphine and oxycodone without the risk of addiction.
READ MOREMaking Drugs ‘Smarter’ Using Nanotechnology
NewsA new method has been developed to make drugs ‘smarter’ using nanotechnology so they will be more effective at reaching their target.
READ MOREComments | 0 ADD COMMENT
Like what you just read? You can find similar content on the communities below.
Drug DiscoveryTo personalize the content you see on Technology Networks homepage, Log In or Subscribe for Free
LOGIN SUBSCRIBE FOR FREE15th Symposium on the Practical Applications of Mass Spectrometry in the Biotechnology Industry
Sep 09 - Sep 12, 2018
CE in the Biotechnology & Pharmaceutical Industries: 20th Symposium on the Practical Applications for the Analysis of Proteins, Nucleotides & Small Molecules
Sep 09 - Sep 12, 2018
Login
You must be logged in to post a comment.