We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
Sign up to read this article for FREE!

After signing up, you'll start to receive regular news updates from us.

New NIST AFM-IR Publication has Catalysis Research Implications

Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 1 minute

Researchers from the NIST Center for Nanoscale Science and Technology (CNST), in collaboration with researchers from University of Lyon, France, have applied a novel microscopy technique to characterize metal-organic framework (MOF) materials, potentially opening a pathway for engineering the chemical properties of these materials at the nanoscale.* MOFs are composed of metal ions connected by organic linker molecules to form 3D-crystalline networks of nanopores with extraordinarily high surface areas, leading to applications in catalysis, chemical separation, and sensing.

Most MOFs consist of just two types of building blocks, one metal ion and one organic linker. Recently, chemists have included mixtures of linkers in order to obtain and fine tune new chemical properties in the resulting structures, which are called MixMOFs. Until now, however, the limited resolution of conventional techniques has impeded progress in understanding MixMOFs sufficiently to optimize them for desired applications.

To overcome these limitations, the researchers used the nanoIR™ from Anasys Instruments, USA. Already in its second generation, this multi-functional platform combines the lateral resolution of atomic force microscopy (AFM) with the chemical specificity of infrared spectroscopy. The NIST researchers used the nanoIR to map the chemical composition of individual In-MIL-68 MixMOF micro-crystals with nanoscale resolution. According to Andrea Centrone, a Project Leader in the CNST’s Energy Research Group, “For the first time, we can take a look into MixMOF single crystals and map the distribution of the linkers. Understanding whether MOF crystals are homogenous or not is important for applications as homogeneity in the distribution of active sites within a crystal is a prerequisite for designing advanced catalytic materials.”

The researchers believe that the use of the AFM-IR technique will stimulate MixMOF research, and help scientists improve these materials for use in a range of applications.