We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
New Technology For Early Detection Of Stomach Cancer
News

New Technology For Early Detection Of Stomach Cancer

New Technology For Early Detection Of Stomach Cancer
News

New Technology For Early Detection Of Stomach Cancer

Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "New Technology For Early Detection Of Stomach Cancer"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Innovative gastric cancer-detection technology developed by the Technion can be used for the early detection of stomach cancer and for identifying persons at risk for developing the disease. The new detection method, based on breath analysis, has significant advantages over the existing detection technology: Gut reports that the new method is quick, simple, inexpensive and non-invasive.

Gastric cancer is one of the most lethal forms of cancer and in most cases, its diagnosis involves an endoscopy (the insertion of a tube into the esophagus, requiring that the patient fast and receive an intravenous sedative). Treatment is aggressive chemotherapy, radiation and the full or partial removal of the stomach. The disease develops in a series of well-defined steps, but there’s currently no effective, reliable, and non-invasive screening test for picking up these changes early on. Thus, many people succumb to stomach cancer only because it was not diagnosed in time.

The new technology, developed by Prof. Hossam Haick of the Technion Faculty of Chemical Engineering, can be used to detect premalignant lesions at the earliest stage, when healthy cells start becoming cancerous.

The research, published in Gut as part of the doctoral thesis of Mr. Haitham Amal, was conducted in conjunction with a Latvian research group headed by Prof. Marcis Leja, based on the largest population sample ever in a trial of this type. 484 people participated in the trial, 99 of whom had already been diagnosed with stomach cancer. All the participants were tested for Helicobacter pylori, a bacterium known to increase the risk for stomach cancer, and two breath samples were taken from each person.

The first sample from each participant was analyzed using the GCMS technique, which measures volatile organic substances in exhaled breath. The researchers noted that GCMS technology cannot be used to detect stomach cancer because the testing is very expensive and requires lengthy processing times and considerable expertise to operate the equipment.

The second breath sample was tested using nanoarray analysis, the unique technology developed by Prof. Haick, combined with a pattern recognition algorithm.

The findings:

  • Based on the concentrations of 8 specific substances (out of 130) in the oral cavity, the new technology can distinguish between three groups: gastric cancer patients, persons who have precancerous stomach lesions, and healthy individuals.
  • The new technology accurately distinguishes between the various pre-malignant stages.
  • The new technology can be used to identify persons at risk for developing gastric cancer.
  • The diagnosis is accurate, regardless of other factors such as age, sex, smoking habits, alcohol consumption and the use of anti-oxidant drugs.
In short, the nano-array analysis method developed by Prof. Haick is accurate, sensitive technology that provides a simple and inexpensive alternative to existing tests (such as GCMS). This new technology offers early, effective detection of persons at risk for developing stomach cancer, without unnecessary invasive tests (endoscopy). In order to assess the accuracy and effectiveness of the new, a wide-scale clinical trial is currently under way in Europe, with thousands of participants who have cancerous or pre-cancerous tumors.

Advertisement