We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

Preclinical Study Finds NK Cells Show Activity Against Lymphoma Cells

Preclinical Study Finds NK Cells Show Activity Against Lymphoma Cells content piece image
Human lymphoma tumor cells in the pleural fluid stained with a Defquick stain and magnified to 400x. Credit: Dr Lance Liotta Laboratory
Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 1 minute

Cytokine-activated natural killer (NK) cells derived from donated umbilical cord blood, combined with an investigational bispecific antibody targeting CD16a and CD30 known as AFM13, displayed potent anti-tumor activity against CD30+ lymphoma cells, according to a new preclinical study from researchers at The University of Texas MD Anderson Cancer Center.

The findings were published today in Clinical Cancer Research, a journal of the American Association for Cancer Research. These results led to the launch of a Phase I clinical trial to evaluate the combination of cord blood-derived NK cells (cbNK cells) with AFM13 as an experimental cell-based immunotherapy in patients with CD30+ lymphoma.

"Developing novel NK cell therapies has been a priority for my team at MD Anderson to address unmet needs for the treatment of both hematologic cancers and solid tumors," said senior author Katy Rezvani, M.D., Ph.D., professor of Stem Cell Transplantation and Cellular Therapy. "This preclinical work provided proof of principle for NK cells precomplexed with AFM13, suggesting that they can effectively eliminate lymphoma cells expressing CD30 and warrant further clinical testing."

Natural killer cells are part of the innate immune system and work naturally to eliminate cancer cells in the body. However, they have limited persistence on their own, and tumors can develop mechanisms to evade NK cells, Rezvani explained. Therefore, her research team has worked to develop approaches to enhance the anti-tumor efficacy of NK cells.

Affimed's AFM13 is a proprietary bispecific antibody designed to bind to CD16a on NK cells and CD30 on lymphoma cells. Initial studies on NK cells isolated from the blood of patients with Hodgkin lymphoma found that AFM13 formed a stable complex with NK cells and could induce NK cell-mediated killing of CD30+ cells. However, the activity of these cells was modest, leading the researchers to evaluate alternative NK cell sources.

Further experiments suggested that cbNK cells, isolated from umbilical cord blood donations made to the MD Anderson Cord Blood Bank, displayed consistent and improved activity against lymphoma with AFM13 relative to other NK cell sources. The researchers were able to further stimulate the anti-tumor immune activity of cbNK cells by pre-activation with a combination of the cytokines IL-12/15/18.

In animal models, pre-activated and expanded cbNK cells complexed with AFM13 resulted in improved tumor control and survival relative to controls, with minimal side effects observed.

"These findings suggest that, in animal models, ex vivo pre-activated and expanded cord blood-derived NK cells complexed with AFM13 were able to safely eliminate CD30+ lymphoma cells," Rezvani said. "We look forward to learning if this investigational therapy may provide benefits to patients with advanced lymphoma in the ongoing clinical trial."

Reference: Kerbauy LN, Marin ND, Kaplan M, et al. Combining AFM13, a bispecific CD30/CD16 antibody, with cytokine-activated cord blood-derived NK cells facilitates CAR-like responses against CD30+ malignancies. Clin Cancer Res. 2021. doi: 10.1158/1078-0432.CCR-21-0164

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.