We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
Properties of Light Can be Controlled by Nanostructures
News

Properties of Light Can be Controlled by Nanostructures

Properties of Light Can be Controlled by Nanostructures
News

Properties of Light Can be Controlled by Nanostructures

Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Properties of Light Can be Controlled by Nanostructures"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

A theoretical study based on computational simulations conducted by the UPV/EHU's Nano-bio Spectroscopy Research Group in collaboration with the Japanese research centre AIST, has shown that the intensity of ultraviolet light that is made to pass through a graphene nano-ribbon is modulated with a terahertz frequency. So we are seeing the opening up of a new field of research into obtaining terahertz radiation that has a whole host of applications. 

The UPV/EHU's Nano-bio Spectroscopy Research Group led by Ángel Rubio, a UPV/EHU professor in the Department of Materials Physics and director of the Max Planck Institute for Structure and Dynamics of Matter in Hamburg, has simulated the converting of ultraviolet light into radiation in the terahertz range by making it pass through a graphene nano-ribbon, and has put forward a new compact device designed to generate radiation of this type based on the phenomenon discovered. The research, conducted in collaboration with the research group led by Yoshiyuki Miyamoto of the National Institute of Advanced Industrial Science and Technology (AIST) of Japan, has appeared in the prestigious journal Nanoscale, published by the Royal Society of Chemistry (United Kingdom).

Low-frequency terahertz radiation has a broad range of applications, such as the characterisation of molecules, materials, tissues, etc. However, right now it is difficult to manufacture small, efficient, low-cost devices to produce terahertz radiation.  This phenomenon "extends the range of applicability of radiation of this type to many other spheres in which it was not being used," explained Ángel Rubio, "owing to the fact that one would have to resort to much bigger radiation sources".

The starting point of a new field of research

To carry out this simulation, they used graphene nano-ribbons: strips cut out of sheets of graphene. In the research they concluded that UV light that exerts an effect on the nano-ribbon emits a totally different radiation (terahertz) perpendicular to the incident light. This phenomenon "opens up the possibility of generating structures that will allow the frequency range to be changed using different nanostructures," explained Prof Rubio. "A new field of research is being opened up".

Now that the existence of the phenomenon has been demonstrated, "it would be necessary to see if the same thing can be done with a different type of light source," explained Ángel Rubio. In the research they used a high-intensity laser pointer so that the simulation would be correct, but it should be possible to use "more accessible light sources", he specified. What is more, another step to be taken in this field would be "to use a set of nanostructures instead of a single one to produce an actual device."

The UPV/EHU group has worked on the proposal of the idea and its implementation in code that allows a simulation to be made on the computer, while the Japanese research centre AIST has been responsible for the numerical calculations. The researchers have used novel simulation techniques of first principles, methods in which the predictive capacity is very high: the behaviour of a material is predicted without using external parameters. "The simulation techniques have reached a point," concluded Rubio, "where systems that are later shown to actually behave in the same way experimentally can be predicted".

Advertisement