We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Raman to Study Radiation Damage in Cells, Tissues

Raman to Study Radiation Damage in Cells, Tissues

Raman to Study Radiation Damage in Cells, Tissues

Raman to Study Radiation Damage in Cells, Tissues

Read time:

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Raman to Study Radiation Damage in Cells, Tissues "

First Name*
Last Name*
Email Address*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Renishaw - UBC-O Andrew Jirasek.jpg

Dr Andrew Jirasek from the University of British Columbia – Okanagan with his Renishaw inVia Raman microscope 

The Irving K Barber School of Arts and Sciences at the University of British Columbia, Canada, hosts a multidisciplinary group of physics, engineering and radiation oncology scientists. It is interested in detecting and understanding damage in cells and tissues due to ionizing radiation used in cancer treatments. Currently the dose a patient receives is prescribed based on population averages and does not take individual patient radio sensitivity into account. The ultimate aim of the group is to help personalize prescriptions based on an individual's response to radiation. 

In some cases, it is possible to use Raman spectroscopic techniques to detect radiation damage in patients. The group is conducting research to find out if it is possible to make an early detection tool based on Raman spectroscopy, either prior to first treatment or within the first few fractions of treatment. 

Associate Professor, Andrew Jirasek, is a physicist by training who has specialised in how to accurately measure radiation treatments for cancer patients. Together with his colleagues, Dr Jirasek was the first to apply Raman spectroscopy to look at the unique cellular changes that occur following radiation. He says. “This is a very powerful technique. We can record and analyse information about how the molecules and cellular constituents change throughout treatment.” Dosage can then be adjusted to be more precise and targeted. He continues, “Previously, the only outcome of treatment was disease status; for example, tumour size. Our hope is that Raman analysis will provide accurate treatment evaluation sooner. Like many other diseases, timing with cancer treatment is everything. The sooner successful therapy is implemented, the better for the patient.” After conducting cell and animal model experiments, the group is now at the point of testing the system on prostate cancer patients. 

Describing the choice of the Renishaw inVia Raman microscope for this work, Dr Jirasek said, “We chose the inVia for multiple reasons. The system delivers excellent Raman sensitivity and throughput. It also offers us high potential for automation. Because the system is used by multiple groups and types of users, ease of use is important to maximise our ‘up time’. With several users not being experts in Raman, we have appreciated the excellent customer service support we have had from Renishaw.” 

Dr Jirasek's work has been well reported and has recently appeared in several publications as well as presentations at conferences. Notable among these include “A Raman spectroscopic study of cell response to clinical doses of ionizing radiation”1 and “Raman spectroscopy identifies radiation response in human non-small cell lung cancer xenografts.”2 Full details of this research program and publications may be viewed at Dr Jirasek's homepage: http://medicalphysics.ok.ubc.ca/faculty/jirasek.html.