We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Reaction Monitoring Research Using the Spinsolve Benchtop NMR System

Reaction Monitoring Research Using the Spinsolve Benchtop NMR System

Reaction Monitoring Research Using the Spinsolve Benchtop NMR System

Reaction Monitoring Research Using the Spinsolve Benchtop NMR System

Read time:

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Reaction Monitoring Research Using the Spinsolve Benchtop NMR System"

First Name*
Last Name*
Email Address*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Magritek report on the use of their Spinsolve Benchtop NMR spectrometer for reaction monitoring studies in the Cronin Group in the Chemistry Department of the University of Glasgow.

Professor Lee Cronin holds the Regius Chair of Chemistry at the University of Glasgow. Research in the Cronin Group is motivated by the fascination for complex chemical systems and the desire to construct complex functional molecular architectures that are not based on biologically derived building blocks.

They are developing a new approach to the chemical sciences which they call Chemical Cybernetics. This combines robotics, algorithms, flow chemistry and reaction programming. Over a number of years, Professor Cronin and his colleagues have used use a lot of integrated techniques to explore chemical reaction systems. For example, one networked flow and flow systems including mass spectrometry, IR, UV and NMR.

The recent advent of benchtop NMR and having been inspired by previous self-optimized flow systems with in-line analytical monitoring, the Cronin Group has extended this concept so that multinuclear and 2D NMR can be performed in the fume hood. The Magritek Spinsolve benchtop NMR provides analyses from the single sample in a standard 5 mm sample tube to performing in-line 1H, 13C 19F and 2D NMR analysis.

They have also combined in-line 1H NMR with computational techniques to make a self-optimizing reactor. They have taken their benchtop NMR system and created a flow system using nothing more than simple plastic tubing and non-dueterated solvents.

Before benchtop NMR, Professor Cronin employed both benchtop and high resolution mass spectrometry along with flow IR and UV systems. As he says, "We now use the Magritek Spinsolve in the 'flow' mode that we developed in my lab. For our work, this is important as it allows us to look at reaction dynamics. We can run entire reactions (no need for deuterated solvent) or look at things in real time; we can adjust reaction outcomes as a function of NMR. This makes for a very flexible system."

Previous systems integrating in-line NMR spectroscopy had been limited to bypass configurations, flow cells in high-field magnets or applied microfluidics. The Cronin approach takes advantage of a compact permanent low-field magnet (43 MHz) based on the Hallbach design.

As reported in a recent paper in the Royal Society of Chemistry journal, Chemical Science, "Despite the low field of the magnet, Spinsolve has remarkable sensitivity and stability."