We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.


Rechargeable Battery Internal 3D Structure Revealed for the First Time

Electric cars plugged in at a charging station.
This research opens up a wide range of areas for the new technique from energy storage and chemical engineering to biomedical applications. Credit: Lancaster University.
Listen with
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 1 minute

Lancaster researchers have pioneered a technique to observe the 3D internal structure of rechargeable batteries for the first time.

The research, published in Nature Communications, is led by Professor Oleg Kolosov from Lancaster’s Physics Department in collaboration with University College London and NEXGENNA Faraday Institution Consortium.

The team used a novel 3D Nano-Rheology Microscopy (3DNRM) -based technique to visualise the 3D nanostructure inside rechargeable batteries, from the molecular scale electrical double-layer to the nanoscale-thick electrochemical surface layer on the graphite anode surface in a lithium-ion battery.

For the first time, this enabled the direct observation of the progression of the whole three dimensional structure of the solid electric interface (SEI), a nanoscale passivation layer formed on the battery electrode-electrolyte interface, that predetermines key battery properties.

The authors were able to reveal key predictors of SEI layer formation in a complex interplay of molecular dimension electrical double layer structures, surface properties of carbon layers and solvent - Li ions interaction in the electrolyte.

The nanoarchitecture of solid-liquid interfaces are critical for high performance batteries, but it has been difficult to characterise reaction interfaces within batteries due to their inherent inaccessibility.

Want more breaking news?

Subscribe to Technology Networks’ daily newsletter, delivering breaking science news straight to your inbox every day.

Subscribe for FREE

Dr Yue Chen of Lancaster University, who is the lead author, said: “So far, understanding the SEI formation mechanism is still a most challenging and least explored area due to the lack of an interfacial characterization technique capable of both nanoscale resolution and operation in the working battery environment.”

The dynamics of interfacial reactions define energy flow and conversion and govern chemical species transfer in important physical, chemical and biological processes, from catalytic reactions, energy storage and release in batteries, to antigen-antibody interactions and information transmission across neural cells.

This opens up a wide range of areas for the new technique from energy storage and chemical engineering to biomedical applications.

Reference: Chen Y, Wu W, Gonzalez-Munoz S, et al. Nanoarchitecture factors of solid electrolyte interphase formation via 3D nano-rheology microscopy and surface force-distance spectroscopy. Nat Commun. 2023;14(1):1-13. doi:10.1038/s41467-023-37033-7

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.