We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

AFMs from Asylum Guide the Development of Thin Film Deposition and Etch Processes

Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 1 minute

Thin films are ubiquitous in materials science and technology, with uses ranging from exotic next generation materials (e.g. ferroelectric data storage) to practical everyday items (e.g. food wrappers). The intrinsic dimensions of thin films (thickness, grain and domain sizes, etc.) and the strong dependence of performance on film properties demand tools with nanoscale resolution.

Atomic force microscopy (AFM) has long been used to measure thin film roughness and uniformity, and that remains one of the most common measurements made with AFM.

As materials become more complex, AFMs are also being used to characterize the functionality of thin films, including their mechanical, electrical, electro-mechanical, and magnetic properties. A new application note from Oxford Instruments Asylum Research titled “AFM Characterization of Thin Films: High Resolution Topography and Functional Properties” describes the many ways that Asylum Research AFMs are being used in this field and highlights several real-world examples where the AFM contributes directly actionable information that can help guide research and development of thin film materials.

“AFM measurements of thin films have become so common over the last twenty years that many people have begun to think of them as routine tasks within the capability of any old AFM,” said Dr. Ben Ohler, Director of Marketing at Oxford Instruments Asylum Research.

Dr. Ohler continued, “This mindset overlooks the reality that many thin films are shrinking in dimensions and growing more sophisticated in functionality. Film roughness can now be within the noise floor of first-generation AFMs. Film morphology is often inadequate to predict performance, which might depend more strongly on nanoelectrical or nanomechanical properties. Asylum Research AFMs offer higher performance and advanced imaging modes to provide more comprehensive information about these materials. Our AFMs today are also dramatically simpler to use and more productive than the AFMs you more commonly find in film deposition and etch facilities.”