We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
JEOL Collaborates on Electron and NMR Crystallography
Product News

JEOL Collaborates on Electron and NMR Crystallography

JEOL Collaborates on Electron and NMR Crystallography
Product News

JEOL Collaborates on Electron and NMR Crystallography


Want a FREE PDF version of This Product News?

Complete the form below and we will email you a PDF version of "JEOL Collaborates on Electron and NMR Crystallography "

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Researchers at the RIKEN-JEOL Collaboration Center and the Kyoto University iCeMS (Material-Cell Integrated System Center) have developed a nuclear magnetic resonance (NMR) crystallography method for observing crystal structure in detail, including the position of hydrogen atoms.

Single crystal X-ray diffraction analysis of low-molecular-weight active pharmaceutical ingredient (API) crystal structures requires a single crystal of 10 μm or more, making microcrystal analysis challenging. The collaborative research group has integrated whole structure analysis by electron diffraction (ED) and local structure analysis by solid-state NMR (SSNMR), utilizing first-principles quantum chemical calculations, to observe microcrystals of 0.1 to 1 μm. With this method, it was also possible to analyze substances in mixtures, which are often found in general preparations and usually pose a challenge for XRD techniques.

Dr. Michael Frey, Analytical Instruments Product Manager, JEOL USA, Inc. commented: “Using this new electron and NMR crystallography technique, we could confirm the structure of the model system L-histidine, and succeeded in the structural analysis of the drug cimetidine (crystal form B), whose structure was previously unknown. The advanced capabilities of the JEOL JNM-ECZ600R spectrometer and 3.2 mm double-resonance magic angle spinning Probe for SSNMR measurements, and the JEM-2200FS transmission electron microscope for ED measurements, have helped further our understanding of the hydrogen-bonding network in these microcrystals.”

The results of this research have demonstrated the importance of accurately determining both the structure and the hydrogen positions in microcrystals, and are expected to contribute to the quality improvement of small molecule drugs to treat conditions such as lifestyle-related diseases and hay fever. These methods may contribute to future quality assurance of pharmaceuticals, and lead to the discovery of more unknown crystal forms.


Advertisement