China Leads the Way on Battery Recycling, Followed by Europe and US
With the increase in the production of batteries for electric vehicles, more emphasis is being placed on recycling them.
Complete the form below to unlock access to ALL audio articles.
With the increase in the production of batteries for electric vehicles, demand is also rising for the necessary raw materials. In view of risks to the supply chain, environmental problems and precarious working conditions which are all associated with the mining and transportation of these materials, the recycling of battery materials has become an important issue in research, politics and industry. Prof. Stephan von Delft from the University of Münster (Germany) heads a team of researchers from the fields of science and the automotive and battery industries who have therefore been investigating when the demand for the three most important raw materials for batteries – lithium, cobalt and nickel – can be met entirely through recycling in Europe, the US and China; in other words, when a completely circular economy will be possible in these regions. The team’s conclusion is that China will achieve this first, followed by Europe and the US.
In detail, the results show that China is expected to be able to employ recycling to meet its own demand for primary lithium for electric vehicles, obtained through mining, from 2059 onwards; in Europe and the US, this will not happen until after 2070. As far as cobalt is concerned, recycling is expected to ensure that China will be able to meet its needs after 2045, at the earliest; in Europe this will happen in 2052 and in the US not until 2056. As regards nickel: China can probably meet demand through recycling in 2046 at the earliest, with Europe following in 2058 and the US from 2064 onwards.
Want more breaking news?
Subscribe to Technology Networks’ daily newsletter, delivering breaking science news straight to your inbox every day.
Subscribe for FREEThe researchers made use of a so-called dynamic material flow analysis to calculate both future demand and the recyclable raw materials then available. The data basis the team used consisted of data from current research work and market forecasts regarding developments in battery production and sales and the associated demand for raw materials.
Reference: Wesselkämper J, Dahrendorf L, Mauler L, Lux S, von Delft S. A battery value chain independent of primary raw materials: Towards circularity in China, Europe and the US. Resour, Conserv Recycl. 2024;201:107218. doi: 10.1016/j.resconrec.2023.107218
This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.