We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
Determination of 13 Organic Toxicants in Human Blood
News

Determination of 13 Organic Toxicants in Human Blood

Determination of 13 Organic Toxicants in Human Blood
News

Determination of 13 Organic Toxicants in Human Blood

Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Determination of 13 Organic Toxicants in Human Blood"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Pesticides and antidepressants are frequently misused in drug-facilitated crime because of their toxicological effect and easy-availability. Therefore, it is essential for the development of a simple and reliable method for the determination of these organic toxicants in biological fluids. Here, we report on an applicable method by the combination of optimized liquid-liquid extraction (LLE) procedure and high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) to identify and quantify dimethoate, omethoate, dichlorvos, carbofuran, fenpropathrin, diazepam, estazolam, alprazolam, triazolamm, chlorpromazine, phenergan, barbitone and phenobarbital in human blood. The method demonstrated a linear calibration curve in range of 20 - 500 μg/L (r > 0.994). The accuracy evaluated by recovery spiked at three different concentrations (50, 100 and 200 μg/L) was in the range of 58.8 - 83.1% with a relative standard deviations (RSD) of 3.7 - 7.4%. The limits of quantification ranged over 6.7 - 33.3 μg/L. This method was proved to be simple and reliable, and was thus successfully applied to forensic toxicology.

The full article is published online in Analytical Sciences and is available to access free of charge.


Advertisement