We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.


Developing New Materials To Accelerate the Arrival of "Air Taxis"

A drone flying high above some hills covered in mist
Credit: Alessio Soggetti / Unsplash.
Listen with
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 1 minute

In order for future mobility, such as urban air mobility (UAM), to become a reality, it must be fuel efficient and reduce carbon emissions, which requires the development of new materials with excellent physical properties and recyclability. Self-reinforced composites (SRCs) are inexpensive, lightweight, and have advantages in terms of disposal and recycling as the reinforcement and the base material are composed of the same material. For this reason, it is attracting attention as a next-generation composite material to replace carbon fiber-reinforced composites used in aircraft.

Korea Institute of Science and Technology (KIST, President Seok Jin Yoon) announced that Dr. Jaewoo Kim of the Solutions to Electromagnetic Interference in Future-mobility(SEIF), together with Prof. Seonghoon Kim of Hanyang University and Prof. O-bong Yang of Jeonbuk National University has successfully developed a 100% SRC using only one type of polypropylene (PP) polymer.

Want more breaking news?

Subscribe to Technology Networks’ daily newsletter, delivering breaking science news straight to your inbox every day.

Subscribe for FREE

Until now, in the manufacturing process of SRCs, chemically different components have been mixed in the reinforcement or matrix to improve fluidity and impregnation, resulting in poor physical properties and recyclability. The research team succeeded in controlling the melting point, fluidity, and impregnation by adjusting the chain structure of the polypropylene matrix through a four-axis extrusion process.

The developed SRCs achieved the highest level of mechanical properties, with adhesion strength, tensile strength, and impact resistance improved by 333%, 228%, and 2,700%, respectively, compared to previous studies. When applied as a frame material for a small drone, the material was 52% lighter than conventional carbon fiber reinforced composites and the flight time increased by 27%, confirming its potential for next-generation mobility applications.

Dr. Kim of KIST said, "The engineering process for 100% SRCs developed in this study can be immediately applied to industry, and we will continue to work with the joint research team and industries to secure the global competitiveness of magnetically reinforced composites."

Reference: Lee H, Jang J un, Kim J, et al. True self-reinforced composites enabled by tuning of molecular structure for lightweight structural materials in future mobility. Chem Eng J. 2023;465:142996. doi: 10.1016/j.cej.2023.142996

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.