Engineers Develop Liquid Metal Logic Device Inspired by Venus Flytrap’s Prey-Capture Intelligence
Unique prey-capture mechanism of Venus flytraps has always been an intriguing research focus in biological intelligence.
Complete the form below to unlock access to ALL audio articles.
A research team led by the School of Engineering of the Hong Kong University of Science and Technology (HKUST) has developed a liquid metal-based electronic logic device that mimics the intelligent prey-capture mechanism of Venus flytraps. Exhibiting memory and counting properties, the device can intelligently respond to various stimulus sequences without the need for additional electronic components. The intelligent strategies and logic mechanisms in the device provide a fresh perspective on understanding “intelligence” in nature and offer inspiration for the development of “embodied intelligence”.
The unique prey-capture mechanism of Venus flytraps has always been an intriguing research focus in the realm of biological intelligence. This mechanism allows them to effectively distinguish between various external stimuli such as single and double touches, thereby distinguishing between environmental disturbances such as raindrops (single touch) and insects (double touches), ensuring successful prey capture. This functionality is primarily attributed to the sensory hairs on the carnivorous plants, which exhibit features akin to memory and counting, enabling them to perceive stimuli, generate action potentials (a change of electrical signals in cells in response to stimulus), and remember the stimuli for a short duration.
Want more breaking news?
Subscribe to Technology Networks’ daily newsletter, delivering breaking science news straight to your inbox every day.
Subscribe for FREETo demonstrate, Prof. Shen and Dr. Yang constructed an artificial Venus flytrap system comprising the LLM intelligent decision-making device, switch-based sensory hair, and soft electric actuator-based petal, replicating the predation process of Venus flytraps. Furthermore, they showcased the potential applications of LLM in functional circuit integration, filtering, artificial neural networks, and more. Their work not only provides insights into simulating intelligent behaviors in plants, but also serves as a reliable reference for the development of subsequent biological signal simulator devices and biologically inspired intelligent systems.
“When people mention ‘artificial intelligence’, they generally think of intelligence that mimics animal nervous systems. However, in nature, many plants can also demonstrate intelligence through specific material and structural combinations. Research in this direction provides a new perspective and approach for us to understand ‘intelligence’ in nature and construct ‘life-like intelligence’,” said Prof. Shen.
“Several years ago, when Dr. Yang was still pursuing her PhD in my research group, we discussed the idea of constructing intelligent entities inspired by plants together. It is gratifying that after several years of effort, we have achieved the conceptual verification and simulation of Venus flytrap intelligence. However, it is worth noting that this work is still relatively preliminary, and there is much work to be done in the future, such as designing more efficient structures, reducing the size of devices, and improving system responsiveness,” added Prof. Shen.
Reference: Yang Y, Shen Y. A liquid metal-based module emulating the intelligent preying logic of flytrap. Nat Commun. 2024;15(1):3398. doi: 10.1038/s41467-024-47791-7
This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source. Our press release publishing policy can be accessed here.