We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
Formation of Coal Almost Turned Our Planet into a Snowball
News

Formation of Coal Almost Turned Our Planet into a Snowball

Formation of Coal Almost Turned Our Planet into a Snowball
News

Formation of Coal Almost Turned Our Planet into a Snowball

Credit: Fig. 2 of Feulner et al (cutout)
Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Formation of Coal Almost Turned Our Planet into a Snowball"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

While burning coal today causes Earth to overheat, about 300 million years ago the formation of that same coal brought our planet close to global glaciation. For the first time, scientists show the massive effect in a study published in the renowned Proceedings of the US Academy of Sciences. When trees in vast forests died during a time called the Carboniferous and the Permian, the carbon dioxide (CO2) they took up from the atmosphere while growing got buried; the plants’ debris over time formed most of the coal that today is used as fossil fuel. Consequently, the CO2 concentration in the atmosphere sank drastically and Earth cooled down to a degree it narrowly escaped what scientists call a ‘snowball state’.

Formation of coal almost turned our planet into a snowball

“It is quite an irony that forming the coal that today is a major factor for dangerous global warming once almost lead to global glaciation,” says author Georg Feulner from the Potsdam Institute for Climate Impact Research. “However, this illustrates the enormous dimension of the coal issue. The amount of CO2 stored in Earth’s coal reserves was once big enough to push our climate out of balance. When released by burning the coal, the CO2 is again destabilizing the Earth system.”

The study examines the sensitivity of the climate in a specific period of Earth’s deep past by using a large ensemble of computer simulations. While some of the changes in temperature at that time can clearly be attributed to how our planet’s axis was tilted and the way it circled the sun, the study reveals the substantial influence of CO2 concentrations. Estimates based on ancient soils and fossil leaves show that they fluctuated widely and at some point sank to about 100 parts CO2 per million parts of all gases in the atmosphere, and possibly even lower. The model simulations now reveal that global glaciation occurs below 40 parts per million.

Burning that same coal dangerously raises greenhouse gas concentration in our atmosphere

Today, CO2 levels in the atmosphere have reached more than 400 parts per million. Carbon dioxide acts as a greenhouse gas: the Sun warms Earth’s surface, but most of the heat radiated by the surface escapes into space; CO2 and other greenhouse gases hinder part of this heat from escaping, hence warming the planet.

“We should definitely keep CO2 levels in the atmosphere below 450 parts per million to keep our climate stable, and ideally much lower than that. Raising the amount of greenhouse gases beyond that limit means pushing ourselves out of the safe operating space of Earth,” says Feulner. “Earth’s past teaches us that periods of rapid warming were often associated with mass extinction events. This shows that a stable climate is something to appreciate and protect.”

This article has been republished from materials provided by Potsdam Institute for Climate Impact Research. Note: material may have been edited for length and content. For further information, please contact the cited source.

Reference:

Feulner, G. (2017): Formation of most of our coal brought Earth close to global glaciation. Proceedings of the National Academy of Sciences (PNAS) [doi:10.1073/pnas.1712062114]

Advertisement