We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
Nanomaterial Makes Solar Panels Cheaper and More Sustainable
News

Nanomaterial Makes Solar Panels Cheaper and More Sustainable

Nanomaterial Makes Solar Panels Cheaper and More Sustainable
News

Nanomaterial Makes Solar Panels Cheaper and More Sustainable

Credit: Pixabay/ Pexels
Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Nanomaterial Makes Solar Panels Cheaper and More Sustainable"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Researchers modified a nanomaterial to make solar cells as efficient as silicon-based cells, but without their high cost and complex manufacturing.

Professor Joe Shapter said the finding addressed an urgent need for alternative environmentally-friendly energy sources capable of providing efficient and reliable energy production.

“Silicon-based solar cells remain the dominant first-generation product, making up 90 per cent of the market, but demand is high for cells that can be manufactured without their high prices and complexity,” Professor Shapter said.

“Among the next-generation technologies, perovskite solar cells (PSCs) have attracted enormous attention because of their high efficiency and ease of fabrication.

“The technology has undergone unprecedented rapid development in recent years.

“But the new generation of solar cells still have some drawbacks such as poor long-term stability, lead toxicity and high material costs.”

Professor Shapter said his team studied a nanomaterial that showed great promise in overcoming some of the new cell’s drawbacks and used doping, a common method of modifying the new cell’s nanomaterial, to enhance its electrical properties.

The researchers found that the efficiency and thermal stability of the doped cells significantly outperformed those that were not doped.

“The PSCs that had doped cells showed a remarkable solar conversion efficiency that exceeded 21 per cent,” Professor Shapter said.

Solar cell efficiency is the rate at which a solar panel transfers the sunlight into electricity, with the average silicon cell efficiency presently between 15 and 22 per cent.

“This gives us hope that solar energy can continue to develop and improve as one of the most effective renewable and sustainable energy technologies,” Professor Shapter said.

The research involved collaboration with Professor Mohammad Nazeeruddin from École polytechnique fédérale de Lausanne in Switzerland.

Associate Professor Yun Wang from Griffith University contributed modelling to understand the interaction between doped cell layers and materials used in light absorption.

“Our results explain how doped cells can greatly improve the energy conversion efficiency and lifetime of solar cells observed from the AIBN experiments,” Dr Wang said.

Professor Shapter said the research was part of a global push towards advanced and sustainable solar cell technology. 

“Our research contributes to intensive efforts to develop various types of solar cells with the aim of realising efficient, stable and low-cost replacements for present silicon-based technology.”

Reference: Bati A, Sutanto AA, Hao M, et al. Cesium-Doped Ti 3C 2T x MXene for efficient and thermally stable perovskite solar cells. 2021. doi: 10.2139/ssrn.3891059

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.


Advertisement