New Building Material Records Its Own Mechanical Stress History Through Luminescence
A new material can record stress through luminescence, making it easier to identify crumbling infrastructure.
Complete the form below to unlock access to ALL audio articles.
Identifying crumbling infrastructure is sometimes as difficult as rectifying it. Yet, this process has been made easier thanks to an innovative new material developed by Tohoku University researchers.
The material responds to mechanical stimuli by recording stress history through a luminescent effect called an afterglow. This information is stored for a long time, and by applying the material to the surfaces of structures, researchers can observe changes in the afterglow to determine the amount of stress the material has experienced.
"What makes our material truly innovative is that it operates without a power supply, complex equipment, or on-site observation and is easily combined with IoT technology," points out Tohoku University professor and corresponding author of the study, Chao-Nan Xu.
In Japan, aging infrastructure has become a significant problem, leading to an increased demand for new diagnostic technologies that prevent accidents and/or extend the life of structures.
Mechanoluminescent materials exhibit luminescence when mechanically stimulated, and technologies such as crack detection and stress visualization have been developed by applying this material to the surface of structures. But the luminescence can only be observed at the moment of mechanical stimulation, and information about past mechanical stimuli cannot be retrieved.
Want more breaking news?
Subscribe to Technology Networks’ daily newsletter, delivering breaking science news straight to your inbox every day.
Subscribe for FREEXu and her colleagues discovered a simple and environmentally friendly method to record stress using Pr-doped Li0.12 Na0.88 NbO3 (LNNO). This LNNO had a mechanical recording functionality, meaning it could retrieve even past stress events.
To retrieve past stress information, LNNO is applied as a coating on the surface of an object and then irradiated with a flashlight. The afterglow produced by LNNO can be measured using cameras or light sensors. The study demonstrated that the afterglow image matches quantitatively with the results obtained through finite element method analysis. Additionally, the research confirmed that LNNO retains this stress information even after a period of five months.
"Our findings are expected to alleviate the shortage of manpower in structural diagnosis, and lower costs," adds Xu.
Reference: Uchiyama T, Atsumi T, Otonari K, Fujio Y, Zheng XG, Xu CN. Direct recording and reading of mechanical force by afterglow evaluation of multi-piezo mechanoluminescent material Li0.12Na0.88NbO3 on well-designed morphotropic phase boundary. Appl Phys Lett. 2024;124(17):171105. doi: 10.1063/5.0209065
This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source. Our press release publishing policy can be accessed here.