We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.


Ocean Nanoplastics Identified for the First Time

Fish swimming among microplastics.
Credit: iStock.
Listen with
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 2 minutes

Millions of tons of plastic waste enter the oceans each year. The sun’s ultraviolet light and ocean turbulence break down these plastics into invisible nanoparticles that threaten marine ecosystems.

In a new study, engineers at the University of Notre Dame have presented clear images of nanoplastics in ocean water off the coasts of China, South Korea and the United States, and in the Gulf of Mexico. These tiny plastic particles, which originated from such consumer products as water bottles, food packaging and clothing, were found to have surprising diversity in shape and chemical composition.

The engineers’ research was published in Science Advances.

Want more breaking news?

Subscribe to Technology Networks’ daily newsletter, delivering breaking science news straight to your inbox every day.

Subscribe for FREE

“Nanoplastics are potentially more toxic than larger plastic particles,” said Tengfei Luo, the Dorini Family Professor of Aerospace and Mechanical Engineering at the University of Notre Dame. “Their small size makes them better able to penetrate the tissues of living organisms.”

Previously, nanoplastic particles synthesized in laboratories had been used in toxicity studies to investigate their effect on marine life. Luo’s team of researchers, in collaboration with the lab of Wei Xu at Texas A&M, decided to search for actual nanoplastics in the world’s oceans, suspecting they might be significantly different from the lab-created versions, which are highly uniform in shape and composition. Any differences found may affect toxicity studies.

Nanoplastics are believed to exist at extremely low concentrations in the ocean. To find them in seawater, Luo’s team used a unique bubble deposition technique that they had previously developed to find traces of DNA molecules for early detection of cancers.

The team mixed seawater samples with silver nanoparticles and heated the solution with a laser until a bubble formed. Variations in surface tension cause the nanoplastic particles to accumulate on the bubble’s exterior. The bubble shrinks, then vanishes, depositing the particles in one concentrated spot. Electron microscopy and Raman spectroscopy are then used to reveal the nanoplastics’ shapes and chemistries.

Luo’s team found nanoplastics made of nylon, polystyrene and polyethylene terephthalate (PET) — plastic polymers used in food packaging, water bottles, clothing and fish nets — in these seawater samples. Some of the particles’ diverse shapes can be traced back to the different manufacturing techniques used to create them. Surprisingly, PET nanoparticles were found in water samples collected approximately 300 meters deep in the Gulf of Mexico, suggesting nanoplastic contamination is not restricted to the ocean surface.

Follow-up studies will focus on quantifying ocean nanoplastics, Luo said.

“The nanoplastics we found in the ocean were distinctively different from laboratory-synthesized ones,” Luo said.

“Understanding the shape and chemistry of the actual nanoplastics is an essential first step in determining their toxicity and devising ways to mitigate it.”

In addition to Luo and Xu, other co-authors on this paper are Seunghyun Moon, Seongmin Kim, Qiushi Zhang and Renzheng Zhang at the University of Notre Dame, and Leisha Martin at Texas A&M.

Reference: Moon S, Martin LMA, Kim S, et al. Direct observation and identification of nanoplastics in ocean water. Sci Adv. 2024;10(4):eadh1675. doi: 10.1126/sciadv.adh1675

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.