We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

Optimizing Molecular Arrangement for Improved Solar Cell Efficiency

Solar panels.
Credit: American Public Power Association / Unsplash.
Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 2 minutes

Summary 

Researchers developed a tripodal triptycene scaffold that facilitates the assembly of 2D molecular structures, enabling efficient singlet fission with pentacene chromophores. This innovative approach simplifies the process of creating unique materials for applications in organic electronics and solar cells.

Key Takeaways

  • Supramolecular Scaffold: The tripodal triptycene scaffold allows for the easy assembly of various molecules into organized 2D structures.
  • Enhanced Singlet Fission: The pentacene-based assemblies demonstrated high efficiency, achieving an 88% quantum yield in singlet fission.
  • Versatile Applications: This method provides a platform for constructing diverse molecular assemblies, advancing materials science and organic electronics.

  • Research in the field of material science and electronics relies on the innovative arrangement of molecules or atoms to develop materials with unique properties not found in conventional materials. Two-dimensional (2D) assemblies of π-electronic systems, arranged in thin layers, are becoming increasingly important in the fields of materials science and organic electronics. Their unique arrangement allows for specific electronic and physical properties, making them ideal for applications like solar cells, and flexible displays. However, creating such assemblies is challenging because it often requires special designs and techniques for each type of molecule.

    In a study published in Science Advances, on 13 September 2024, Assistant Professor Tomoya Fukui and Professor Takanori Fukushima from Institute of Science Tokyo, in collaboration with Professor Taku Hasobe from Keio University, present a streamlined approach using supramolecular scaffolds. These scaffolds serve as molecular templates, allowing for the assembly of various molecules into 2D structures without requiring custom setups for each component.

    Want more breaking news?

    Subscribe to Technology Networks’ daily newsletter, delivering breaking science news straight to your inbox every day.

    Subscribe for FREE
    The researchers used 1,8,13-substituted tripodal triptycene as a supramolecular scaffold. Tripodal triptycene-based supramolecular scaffold can assemble into a 2D hexagonal pattern that can be stacked along one dimension, creating a “2D + 1D” structure. The space between these layers can accommodate other molecules. In their earlier work, the team incorporated spherical fullerene (C60) molecules within these layers. In their latest study, they demonstrated that this scaffold could also organize planar acene chromophores by sandwiching pentacene and anthracene chromophores between two triptycene units, forming two distinct 2D self-assembling structures.

    Acenes were selected due to their potential for singlet fission (SF). In this process, a single high-energy photon is converted into two lower-energy triplet excitons, which is expected to enhance solar cell efficiency by increasing charge carriers. Dr. Fukui notes that for efficient singlet fission in the solid state, two conditions must be met: “Acene chromophores need to be placed in close proximity to each other to provide sufficient electronic coupling. Second, the environment around the chromophores needs to be designed to allow them to undergo conformational changes to prevent triplet recombination.”

    In the pentacene-based assemblies, the effective overlap of chromophores enabled singlet fission to occur, with a high quantum yield of 88% for generating a pair of triplets and 130% for producing two free triplets. However, the anthracene-based assemblies did not exhibit singlet fission, likely due to weaker electronic coupling between the chromophores.
    “Pentacene chromophores, which have a size larger than that of the diameter of the triptycene framework, have effective overlap to cause SF, while such an overlap between the chromophores does not occur in the assembly of anthracene analog,” explains Prof. Fukushima.

    Such assemblies can be integrated into comb-shaped electrodes, potentially paving to the way for device applications. “This demonstrates the utility of the triptycene-based supramolecular scaffold to design functional pi-electronic molecular assemblies,” says Prof. Hasobe. The scaffold's adaptable design offers a versatile platform for constructing 2D assemblies with different molecules, paving the way for advancements in supramolecular chemistry, materials science, and organic electronics.


    Reference: Fukumitsu M, Fukui T, Shoji Y, et al. Supramolecular scaffold–directed two-dimensional assembly of pentacene into a configuration to facilitate singlet fission. Sci Adv. 2024;10(37):eadn7763. doi: 10.1126/sciadv.adn7763


    This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source. Our press release publishing policy can be accessed here.


    This content includes text that has been generated with the assistance of AI. Technology Networks' AI policy can be found here.