We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

Renewable Solar Energy Can Help Purify Water, the Environment

Side-view of rows of solar panels standing in a sunny field.
Credit: American Public Power Association / Unsplash.
Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 1 minute

Using electrochemistry to separate different particles within a solution (also known as electrochemical separation) is an energy-efficient strategy for environmental and water remediation: the process of purifying contaminated water. But while electrochemistry uses less energy than other, similar methods, the electric energy is largely derived from nonrenewable sources like fossil fuels.


Chemists at the University of Illinois Urbana-Champaign have demonstrated that water remediation can be powered in part — and perhaps even exclusively — by renewable energy sources. Through a semiconductor, their method integrates solar energy into an electrochemical separation process powered by a redox reaction, which manipulates ions’ electric charge to separate them from a solution like water.  

Want more breaking news?

Subscribe to Technology Networks’ daily newsletter, delivering breaking science news straight to your inbox every day.

Subscribe for FREE

Using this system, the researchers successfully separated and removed dilute arsenate — a derivative of arsenic, which is a major waste component from steel and mining industries — from wastewater.


This work represents proof-of-concept for the applicability of such systems for wastewater treatment and environmental protection.


“Global electrical energy is still predominantly derived from nonrenewable, fossil-fuel-based sources, which raises questions about the long-term sustainability of electrochemical processes, including separations. Integrating solar power advances the sustainability of electrochemical separations in general, and its applications to water purification benefit the water sector as well,” said lead investigator Xiao Su, a researcher at the Beckman Institute for Advanced Science and Technology and an assistant professor of chemical and biomolecular engineering.


Reference: Cho K, Chen R, Elbert J, Su X. Redox‐functionalized semiconductor interfaces for photoelectrochemical separations. Small. 2023. doi: 10.1002/smll.202305275


This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.