We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

Studying Ebola-Host Cell Interaction Helps Find Targets for Antiviral Drugs

Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 1 minute

In some ways, the Ebola virus operates like a vampire; only after it is politely invited in to a host cell does it take up the task of destroying everything in its path.

The virus uses the everyday function of endocytosis--the taking in of matter by a living cell--to gain entry, first attaching to the outer wall before a vesicle forms to draw it into the cell.

In a new study supported by the National Institutes of Health, researchers at Lehigh University seek to elucidate quantitatively--for the first time--the biomechanical mechanism of Ebola-host cell interaction, providing potential new targets for antiviral drug development.

"It is not hyperbole: the outbreak of an Ebola virus epidemic poses a major threat to the entire world," says Frank Zhang, assistant professor in the Departments of Bioengineering and of Mechanical Engineering and Mechanics at Lehigh University and principal investigator on the project. "Yet, because the mechanisms of the actual infection process remain obscure, there is still no specific treatment or vaccine for this dreaded disease."

While Ebola-host cell attachment has been shown to depend on the molecular biomechanics of interaction between receptors on the cell surface and the outer coat of the virus, the quantitative understanding essential for guiding the development of therapies has yet to be developed, says Anand Jagota, co-PI on the project, founding chair of the Department of Bioengineering and Professor of Chemical and Biomolecular Engineering.

The Lehigh team supporting the project, Biomechanics of TIM protein-mediated Ebola virus-host cell adhesion, pairs Jagota's expertise in computational molecular adhesion mechanics with Zhang's focus in mechanosensing--how cells sense and respond to mechanical stimuli. The project, supported by the National Institute of Allergy and Infectious Diseases through a grant totaling nearly a half million dollars over a three year period, formally launched in January of 2018.

According to the team, recent work by other researchers has established the importance of the T-cell immunoglobulin and mucin (TIM) family of proteins in the virus' ability to attach to a cell, specifically the geometry and mechanical properties of TIM's so-called mucin-like stalk domains (MLD). Jagota and Zhang intend to use their skills in experimental and theoretical molecular biomechanics to build upon these recent findings.

"Our hypothesis is that quantitative knowledge about the length, rigidity and charge of MLD can be used to predict conditions for Ebola's attachment," says Jagota. "Through this study, we hope to provide new pharmacological targets and aid in the development of much-needed antiviral therapeutics for the prevention and treatment of Ebola."

This article has been republished from materials provided by Lehigh University. Note: material may have been edited for length and content. For further information, please contact the cited source.