We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
Unborn Babies May Be Exposed to Inhaled Nanoparticles That Cross the Placenta
News

Unborn Babies May Be Exposed to Inhaled Nanoparticles That Cross the Placenta

Unborn Babies May Be Exposed to Inhaled Nanoparticles That Cross the Placenta
News

Unborn Babies May Be Exposed to Inhaled Nanoparticles That Cross the Placenta

Credit: Pixabay.
Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Unborn Babies May Be Exposed to Inhaled Nanoparticles That Cross the Placenta"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Inhaled nanoparticles – human-made specks so minuscule they can’t be seen in conventional microscopes, found in thousands of common products – can cross a natural, protective barrier that normally protects fetuses, according to Rutgers University scientists studying factors that produce low-birth-weight babies.


The scientists reported in the medical journal Placenta they were able to track the movement of nanoparticles made of metal titanium dioxide through the bodies of pregnant rats. After the nanoparticles were inhaled into the lungs of the rodents, some of them escaped this initial barrier. From there, the particles flowed through the placentas, which generally filter out foreign substances to protect the fetus.


“The particles are small and really hard to find,” said Phoebe Stapleton, an author and an assistant professor at Rutgers Ernest Mario School of Pharmacy and a faculty member at Rutgers Environmental and Occupational Health Sciences Institute. “But, using some specialized techniques, we found evidence that the particles can migrate from the lung to the placenta and possibly the fetal tissues after maternal exposure throughout pregnancy. The placenta does not act as a barrier to these particles. Nor do the lungs.”


Most nanoparticles are engineered, with few produced naturally. These particles are used in thousands of products, from sunscreens to pharmaceuticals to sports equipment. They are highly valued because they can enhance the effectiveness of drugs and produce sturdy-though-lightweight products.


Nanoparticles are so named because they are less than 100 nanometers wide, meaning they are tens of thousands of times smaller than the diameter of a single human hair. Despite their usefulness, nanoscale materials are poorly understood, with “very little known about the potential effects on human health and the environment,” according to the National Institute of Environmental Health Sciences.


During the experiment, scientists were surprised to also detect titanium dioxide in the “control” group of rats that hadn’t been given nanoparticles to inhale. It turns out the food given to the animals contained titanium dioxide. As a result, the researchers were able to observe the path the metal took through a rat’s body.


The research emerged from investigations into the causes of low birth weight in human infants. Newborns weighing less than 5.5 pounds can suffer adverse health effects as infants and throughout their lives.


According to Stapleton, one theory is mothers who give birth to babies with low birth weights may have inhaled harmful particulates. The resulting inflammation may affect bodily systems, such as blood flow in the uterus, that could inhibit growth of the fetus.


“Now that we know that the nanoparticles migrate – from the mother’s lungs to the placenta and fetal tissues – we can work on answering other questions,” Stapleton said. “This detail of transfer will help inform future studies of exposure during pregnancy, fetal health, and the developmental onset of disease.”


Reference: D’Errico JN, Doherty C, Reyes George JJ, Buckley B, Stapleton PA. Maternal, placental, and fetal distribution of titanium after repeated titanium dioxide nanoparticle inhalation through pregnancy. Placenta. 2022;121:99-108. doi:10.1016/j.placenta.2022.03.008


This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.


Advertisement