We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.


Zinc-Ion Batteries Stabilized by Novel Means

A schematic of two zinc deposition patterns on two different electrolyte bases.
The schematic diagrams for Zn deposition cycled in different electrolytes. (a) bare ZnSO4 electrolyte; (b) DX/ZnSO4 electrolyte. Credit: Li Zhaoqian
Listen with
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 1 minute

According to research published in international journal of ACS Nano recently, a team led by Dr. LI Zhaoqian. from Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Science (CAS) found that the addition of 1,4-dioxane (DX) molecules in the electrolyte of aqueous zinc ion battery would lead to the preferred Zn (002) texture growth, which effectively suppressed the Zn dendrite growth and improved the reversibility and cycling stability of batteries.

Aqueous rechargeable zinc-ion batteries (ZIBs) are an emerging sustainable system for the next generation of grid-scale energy storage technology. However, the implementation of this technology has been plagued by the serious dendrite issue and poor reversibility of Zn anode. In hexagonal close-packed Zn crystal, (002) facet possesses the lowest surface energy and the slowest growth rate rendering a surface-reaction-controlled deposition process, and thus mitigating the rampant Zn2+ flux and side-reactions. Therefore, inducing preferred Zn (002) texture can effectively alleviate the dendrite growth and the formation of side-reactions.

In this study, researchers constructed an advanced electrolyte modulating strategy to adjust the anode/electrolyte interface. In this new system, the adsorption of 1,4-Dioxane (DX) on the Zn surface can induce Zn (002) texture growth and suppress the detrimental side-reactions.

Want more breaking news?

Subscribe to Technology Networks’ daily newsletter, delivering breaking science news straight to your inbox every day.

Subscribe for FREE
The performance of the new system was validated in later experiments. Battery with the addition of DX demonstrated a long-term cycling stability of 1000 h, even at harsh condition of 10 mA cm-2 with an ultrahigh cumulative plated capacity of 5 Ah cm-2. The battery also showed a high reversibility with average coulombic efficiency of 99.7%.

"The Zn//NH4V4O10 full cell with DX realized high specific capacity and capacity retention," said Dr. LI Zhaoqian, "It's much better than ZIBs with pristine ZnSO4 electrolyte."

This study selectively adjusted the deposition rate of Zn2+ on the crystal plane by adsorbing molecules, which provided a promising strategy for modulating high performance zinc anodes at the molecular level, and was expected to be applied to other metal anodes with poor stability and reversibility.

Reference: Wei T, Ren Y, Wang Y, et al. Addition of dioxane in electrolyte promotes (002)-textured zinc growth and suppressed side reactions in zinc-ion batteries. ACS Nano. 2023;17(4):3765-3775. doi: 10.1021/acsnano.2c11516

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.