We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

Knockdown of p53 by Accell Self-delivering siRNA Causes Inhibition of p53-dependent DNA Damage Response in IMR-32 Neuroblastoma Cell Line and β-amyloid Toxicity in Rat Cortical Neurons

Knockdown of p53 by Accell Self-delivering siRNA Causes Inhibition of p53-dependent DNA Damage Response in IMR-32 Neuroblastoma Cell Line and β-amyloid Toxicity in Rat Cortical Neurons  content piece image

Neuroblastoma cell lines and primary neuronal cultures are commonly used as cellular model systems for studying cancer and neuronal development as well as being highly relevant models for the study of neurodegenerative diseases. However, most neuroblastoma cell lines and practically all primary neuronal cells suffer from low transfection efficiency due to the refractory nature of the cells to lipid-based transfection reagents. As such, application of siRNA for inducing RNA interference (RNAi), has limited utility in these cell types; thus limiting their usefulness for development of functional assays for screening and discovery of novel disease-relevant genes.


Dharmacon™ Accell™ siRNA enables efficient delivery in a wide range of cell lines and primary cells. Accell siRNA reagents carry a novel chemical modication pattern that facilitates the delivery of siRNA without a need for transfection reagents. To demonstrate the utility of Accell siRNA reagents in neuronal cells, the effects of the down-regulation of the tumor suppressor p53 was examined. This gene plays a pivotal role in mediating DNA damage-induced apoptosis as well as conferring a protective effect from β-amyloid peptide-induced neurotoxicity. Here we describe how application of Accell siRNA enabled the development of a high content screening assay in IMR-32 neuroblastoma cells and a whole culture cell viability assay in primary rat cortical neurons. The ability to modulate gene expression in neuronal cell lines and primary neurons using Accell siRNA opens new opportunities for functional genomic siRNA screens in the eld of neuroscience.