

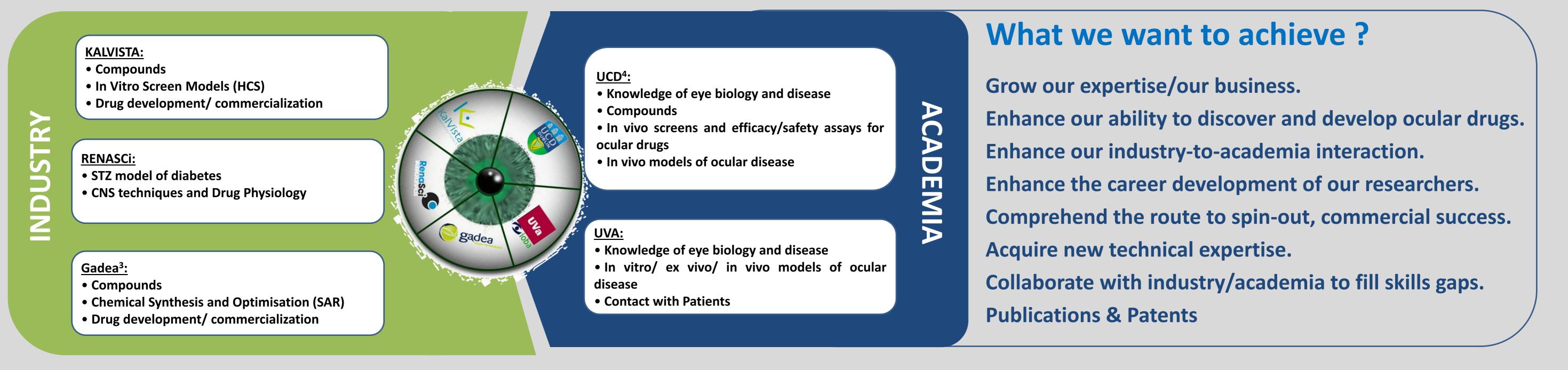
Fighting Blindness with 3D-NET "Drug Discovery & Development of Novel Eye Therapeutics"

Pilar Ventosa-Andrés^{a,b}, Nils Ohnesorge^a, Yolanda Fernández^b, Yolanda Alvarez^a and Breandán Kennedy^a

^aUCD Schools of Biomolecular and Biomedical Sciences, UCD Conway Institute, University College Dublin, Dublin, Ireland ^bGADEA Grupo Farmacéutico, Parque Tecnológico, Parcela 113, 47151, Boecillo,Valladolid, SPAIN

Background On Eye Disease

Blindness and visual impairment¹


Permeability Angiogenesis nflamation Neurodegeneration

Diabetic retinopaty (DR)- 135mill. **Diabetic Macular Oedema (DMO)**-21 mill. Age-related Macular Degeneration (AMD)-20-25 mill **Opacity, Inflammation and/or Neovascularisation of the cornea**

3D-NET² Drug Discovery & Development of Novel Eye Therapeutics

What is 3D-NET²?

A new research consortium of industry and academic partners focusing on discovery & development of novel eye therapeutics to halt or reverse blindness. 3D-NET is funded through a €1.8 million Marie Curie Industry-Academia Pathways and Partnerships (IAPP) award from the EU Seventh Framework Programme (612218/3D-NET).

Discovery & development of small molecules that show novel antiangiogenic efficacy in the eye (WP1), reduce ocular inflamation or retinal vasculature permeability (WP2) and/or show "cell protective" activity in the eye (WP3)

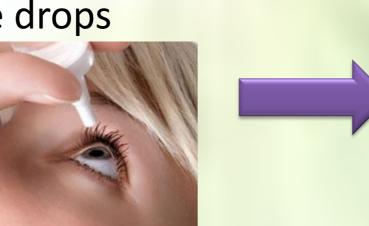
Strategy: Phenotype-base Drug Discovery And Development

Discovery Of Novel Small Molecules That Show Antiangiogenic Efficacy In The Eye (WP1)

The problem Aberrant blood vessels

Abnormal blood vessels

Microancurysm


"Cotton wool"

Hemorrha

Current treatment Intravitreal injection

Future Eye drops

Aim **Uncover safer, more efficacious** therapies for ocular neovascularisation and oedema

3D-NET UCD-Gadea Collaboration IP agreement Transfer of knowledge (ToK)

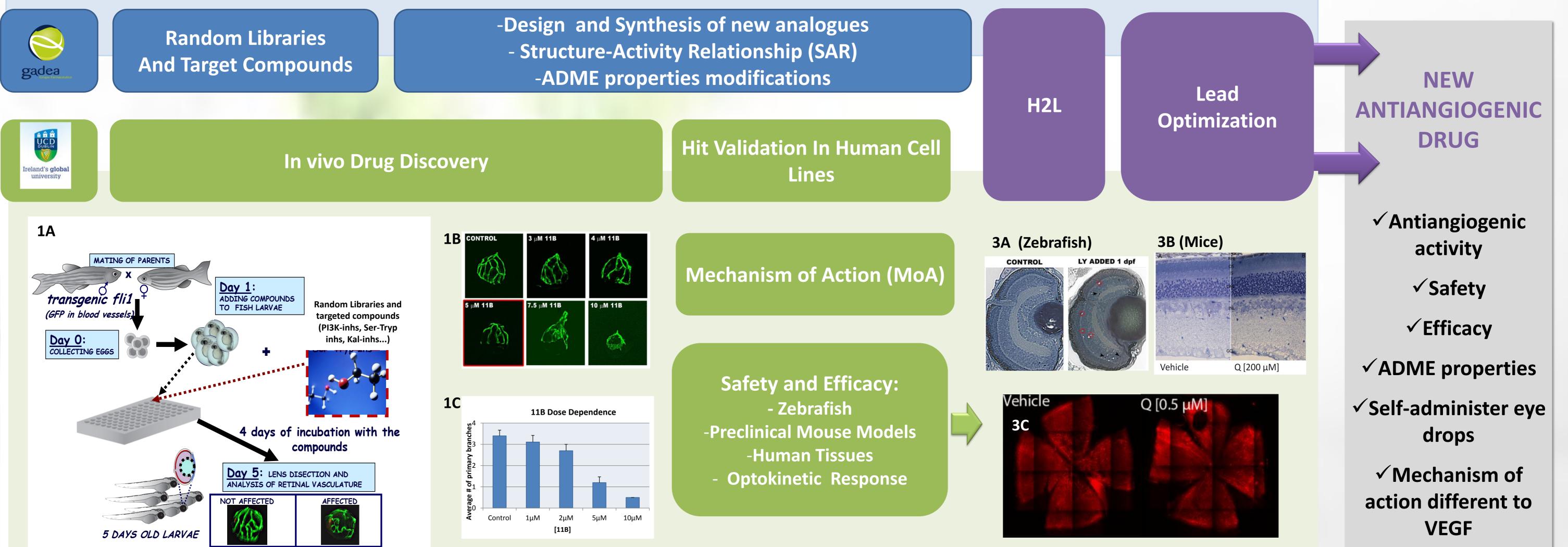


Figure 2.- (A) Histological section on Zebrafish eyes (B) Light micrographs of [200 μ M] drug-treated retina (RHS) and vehicle (LHS) in adult mice (c) Angiogenesis inhibition in a mouse ocular neovascularisation model. (Hyposia/Normoxia treatment of P7 C57BL/6J mice-invitreally treatment of Q and vehicule).

✓ Low cost treatment

 \checkmark IP generation

Figure 1.- (A) Scheme of the screen of small molecules inhibiting development angiogenesis in zebrafish. (B) Epi-fluorescent imagines of dissected zebrafish lenses with different concentration of compound 11B. (C) Graph of the average number of primary branches of hyaloid vasculature.

Computational Assisted Drug Design

References

[1]a)N. Engl. J. Med., 2008, 358, 2606-2617; b)N. Engl. J. Med. 2004, 350, 48-58;c)Nature Reviews Drug Discovery, 2012,11, 541-559;d) Nature, 2005, 438, 967-974;e) Discov. Med., 2013, 15, 291-299

[2] http://www.ucd.ie/3dnet/; https://www.linkedin.com/groups/3DNET-5189321;

https://twitter.com/3dnetconsortium; https://www.facebook.com/3DNETConsortium

[3] http://www.gadea.com/en/

[4]a) http://www.ucd.ie/sbbs/sbbsstaff/academicstaff/bkennedy/ b) Patent number: US2013289066 c) Patent number: WO2014012889

Acknowledgments

This research has been supported by Marie Curie Industry-Academia Pathways & Partnerships (IAPP) (612218/3D-NET)

Contact details: pilar.ventosa@gadea.com