
Identification and Quantitation of Mixture Components of Formulated Products by NMR

Brent G. Pautler, Patrick Wheeler, Sergey Golotvin, Rostislav Pol, Joe DiMartino Advanced Chemistry Development, Inc. (ACD/Labs), 8 King Street East, Suite 107, Toronto, ON Canada, M5C 1B5

Introduction

It has become increasingly important for chemists and analysts to be able to test and determine the various components that may be present in mixtures, both qualitatively and quantitatively, to solve a wide variety of scientific problems. NMR spectroscopy has emerged as a powerful, non-destructive analytical technique that provides unique information that may not be readily accessible by other means to support the needs of various industries, including polymers, pharmaceuticals, consumer products, and nutrition, to name a few. Here we present a set of analyses that help in the understanding and characterization of a sample from the beverage industry. We present improved capabilities in DOSY analysis, as well as newly integrated tools for processing, database searching, interpretation, and reporting. These tools are developed in order to make these analyses more accessible to the user by being both quicker and simpler to interpret.

Diffusion Ordered Spectroscopy (DOSY)

ACD/Labs

Test Product: Energy Drink

Medicinal Ingredients		Medicinal Ingredients in sugar-free	
Ingredient taurine glucuronolactone caffeine niacin (niacinamide) pantothenic acid (calcium d-pantothenate) vitamin B6 (pyridoxine HCI) riboflavin vitamin B12 (cyanocobalamin)	Quantity in 250 mL 1000 mg 600 mg 80 mg 18 mg 6 mg 2 mg 1.65 mg 1 mcg	Ingredient taurine glucuronolactone caffeine niacin (niacinamide) pantothenic acid (calcium d-pantothenate) vitamin B6 (pyridoxine HCI) riboflavin vitamin B12 (cyanocobalamin)	Quantity in 250 mL 1000 mg 600 mg 80 mg 18 mg 6 mg 2 mg 1.65 mg 1 mcg
<i>Non-medicinal Ingredients</i> carbonated water sucrose glucose Citric acid (sodium citrate)		<i>Non-medicinal Ingredients in sugar-free</i> carbonated water citric acid inositol acesulfame k	
inositol flavours caramel		aspartame flavors xanthan gum caramel contains a source of phenylalanine	

 Table 1. Ingredient list of a popular Energy Drink and a Sugar-Free Energy Drink [1].

1D and 2D NMR Analysis of Energy Drinks

Figure 2. DOSY Analysis of Energy Drink acquired using parameters described elsewhere [2]; (A) a standard DOSY contour plot that contains substantial overlap in the diffusion dimension with a 1D cross section slice displayed at a specific D coefficient; (B) a DOSY transformation performed after peak fitting and deconvolution to decrease overlap and increase dispersion; (C) a "D" coefficient quality plot of the anomeric ¹H signals highlighting the resulting D coefficient and that the Δ (diffusion time) & δ (length of gradient) were accurately applied; (D,E) DOSY plots of the anomeric ¹H region highlight that sucrose diffuses more slowly than glucose and corresponding "slice extraction" can reveal single component spectra. Note that the Peak Fitted contour plot results in less overlap and more accurate "D" coefficient determination.

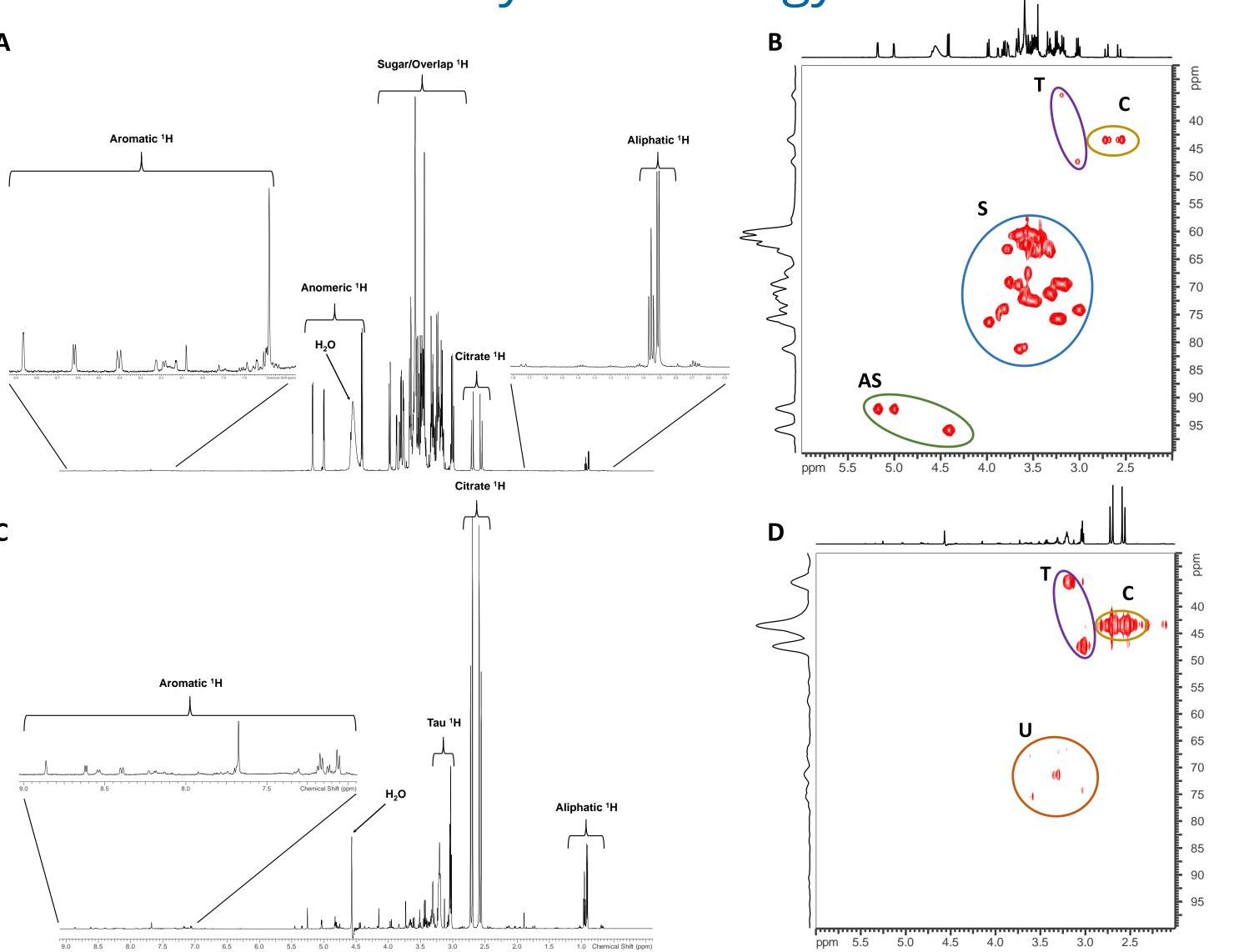


Figure 1. NMR analysis of a commercially available Energy Drink (A & B) and a Sugar-Free

Figure 3. Highlights of the newly developed mixture search functionality that allows for a seamless workflow to quickly identify, quantify, and verify components likely present in the mixture. Upon completion of a search, the results are automatically tabulated and residual curves are extracted for additional analysis if required. This tool aids in the analysts' workflow, allowing for fast and efficient component determination and reporting of results.

Conclusions

Multiple NMR spectroscopic techniques have been applied to effectively determine the number, type, and quantity of components of a test product without requiring data from additional analytical techniques. In particular, the updated mixture searching and database integration allows for rapid identification of mixture constituents through semi-automated tools and manual analysis. Modernized software improves workflows and provides the capability to rapidly determine constituents in a complex mixture, moving from data collection to reporting in a rapid fashion.

Energy Drink (C & D); (A) ¹H NMR spectrum with major overlapping functional group ¹H signals labelled; (B) the corresponding ¹H-¹³C HMQC spectrum, highlighting the main types of components present; (C) ¹H NMR spectrum of the Sugar-Free Energy Drink with the major functional groups labelled (less overlap with the elimination of ¹H signals from sugars); (D) corresponding ¹H-¹³C HMQC spectrum highlighting the main types of components present [1].

The increase in ¹³C chemical shift dispersion allows for the direct assignment of taurine (Tau) based on chemical shift knowledge which can be related to the ¹H NMR of the sugar-free drink, however it still substantially overlaps with the sugar ¹H signals in (A). Symbols: citrate (C), taurine (T), overlapping sugars (S), Anomeric sugar signals (AS), trace unknowns (U). Note that complete identification of all mixture constituents by these techniques alone may not be possible, due to proprietary information and ambiguous ingredients, such as "flavors" which likely give rise to the aliphatic ¹H signals [1] and may require additional resources such as comprehensive database searching/matching.

Acknowledgements

The Authors would like to thank Prof. A. J. Simpson (University of Toronto, Canada) for acquiring the NMR data, and the PharmaSea organization (www.pharma-sea.eu) for support in ongoing DOSY developments.

PHARMASEA *

References [1] Simpson *et al., J. Chem. Edu.* **2009**, 86, 360. [2] Wu *et al., J. Magn. Reson. A* **1995**, 115, 123.

Advanced Chemistry Development, Inc. Tel: (416) 368-3435 Toll Free: 1-800-304-3988 Email: info@acdlabs.com www.acdlabs.com