We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
Intact Gut Barrier Essential for Probiotic Efficacy, Says Gut-on-a-chip Study
News

Intact Gut Barrier Essential for Probiotic Efficacy, Says Gut-on-a-chip Study

Intact Gut Barrier Essential for Probiotic Efficacy, Says Gut-on-a-chip Study
News

Intact Gut Barrier Essential for Probiotic Efficacy, Says Gut-on-a-chip Study

Biomedical engineering assistant professor Hyun Jung Kim with the gut-on-a-chip. Credit: Cockrell School of Engineering, The University of Texas at Austin
Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Intact Gut Barrier Essential for Probiotic Efficacy, Says Gut-on-a-chip Study"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

The first study investigating the mechanism of how a disease develops using human organ-on-a-chip technology has been successfully completed by engineers at The University of Texas at Austin.

Researchers from the Cockrell School of Engineering were able to shed light on a part of the human body – the digestive system — where many questions remain unanswered. Using their “gut inflammation-on-a-chip” microphysiological system, the research team confirmed that intestinal barrier disruption is the onset initiator of gut inflammation.

The study also includes evidence that casts doubt on the conventional wisdom of taking probiotics – live bacteria that are considered good for gut health and found in supplements and foods such as yogurt – on a regular basis. According to the findings, the benefits of probiotics depend on the vitality of one’s intestinal epithelium, or the gut barrier, a delicate single-cell layer that protects the rest of the body from other potentially harmful bacteria found in the human gut.

“By making it possible to customize specific conditions in the gut, we could establish the original catalyst, or onset initiator, for the disease,” said Hyun Jung Kim, assistant professor in the department of biomedical engineering who led the study. “If we can determine the root cause, we can more accurately determine the most appropriate treatment.”

The findings are published this week in Proceedings of the National Academy of Sciences.

Until now, organs-on-chips, which are microchips lined by living human cells to model various organs from the heart and lungs to the kidneys and bone marrow, solely served as accurate models of organ functionality in a controlled environment. This is the first time that a diseased organ-on-a-chip has been developed and used to show how a disease develops in the human body — in this case, the researchers examined gut inflammation.

“Once the gut barrier has been damaged, probiotics can be harmful just like any other bacteria that escapes into the human body through a damaged intestinal barrier,” said Woojung Shin, a biomedical engineering Ph.D. candidate who worked with Kim on the study. “When the gut barrier is healthy, probiotics are beneficial. When it is compromised, however, they can cause more harm than good. Essentially, ‘good fences make good neighbors.’ ”

Shin plans to develop more customized human intestinal disease models such as for inflammatory bowel disease or colorectal cancer in order to identify how the gut microbiome controls inflammation, cancer metastasis and the efficacy of cancer immunotherapy.

Kim is a leading researcher in the development of human organs-on-chips. He developed the first human gut-on-a-chip in 2012 at Harvard University’s Wyss Institute for Biologically Inspired Engineering.

This article has been republished from materials provided by the University of Texas at Austin. Note: material may have been edited for length and content. For further information, please contact the cited source.

Reference:

Shin, W., & Kim, H. J. (2018). Intestinal barrier dysfunction orchestrates the onset of inflammatory host–microbiome cross-talk in a human gut inflammation-on-a-chip. Proceedings of the National Academy of Sciences doi:10.1073/pnas.1810819115

Advertisement