We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.


Spray Technique Opens Doors for Shot-Free Vaccines

Spray droplets against a blue background.
Credit: Nicholas Demetriades/ Pixabay
Listen with
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 2 minutes

Rutgers scientists have devised a highly accurate method for creating coatings of biologically active materials for a variety of medical products. Such a technique could pave the way for a new era of transdermal medication, including shot-free vaccinations, the researchers said.

Writing in Nature Communications, researchers described a new approach to electrospray deposition, an industrial spray-coating process. Essentially, Rutgers scientists developed a way to better control the target region within a spray zone as well as the electrical properties of microscopic particles that are being deposited. The greater command of those two properties means that more of the spray is likely to hit its microscopic target.

In electrospray deposition, manufacturers apply a high voltage to a flowing liquid, such as a biopharmaceutical, converting it into fine particles. Each of those droplets evaporates as it travels to a target area, depositing a solid precipitate from the original solution.

“While many people think of electrospray deposition as an efficient method, applying it normally does not work for targets that are smaller than the spray, such as the microneedle arrays in transdermal patches,” said Jonathan Singer, an associate professor in the Department of Mechanical and Aerospace Engineering in the Rutgers School of Engineering and an author on the study. “Present methods only achieve about 40 percent efficiency. However, through advanced engineering techniques we’ve developed, we can achieve efficiencies statistically indistinguishable from 100 percent.”

Want more breaking news?

Subscribe to Technology Networks’ daily newsletter, delivering breaking science news straight to your inbox every day.

Subscribe for FREE
Coatings are increasingly critical for a variety of medical applications. They are used on medical devices implanted into the body, such as stents, defibrillators and pacemakers. And they are beginning to be used more frequently in new products employing biologicals, such as transdermal patches.

Advanced biological or “bioactive” materials – such as drugs and vaccines – can be costly to produce, especially if any of the material is wasted, which can greatly limit whether a patient can receive a given treatment.

“We were looking to evaluate if electrospray deposition, which is a well-established method for analytical chemistry, could be made into an efficient approach to create biomedically active coatings,” Singer said.

Higher efficiencies could be the key to making electrospray deposition more appealing for the manufacture of medical devices using bioactive materials, researchers said.

“Being able to deposit with 100 percent efficiency means none of the material would be wasted, allowing devices or vaccines to be coated in this way,” said Sarah Park, a doctoral student in the Department of Materials Science and Engineering who is first author on the paper. “We anticipate that future work will expand the range of compatible materials and the material delivery rate of this high‐efficiency approach.”

In addition, unlike other coating techniques used in manufacturing, such as dip coating and inkjet printing, the new electrospray deposition technique is characterized as “far field,” meaning that it doesn’t need highly accurate positioning of the spray source, the researchers said. As a result, the equipment necessary to employ the technique for mass manufacturing would be more affordable and easier to design.

Reference: Park SH, Lei L, D’Souza D, et al. Efficient electrospray deposition of surfaces smaller than the spray plume. Nat Commun. 2023;14(1):4896. doi: 10.1038/s41467-023-40638-7

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.