We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

Using Plants To Synthesize Medicinal Compounds

Using Plants To Synthesize Medicinal Compounds content piece image
Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 1 minute

Anthraquinones are a class of naturally occurring compounds prized for their medicinal properties, as well as for other applications, including ecologically friendly dyes. Despite wide interest, the mechanism by which plants produce them has remained shrouded in mystery until now.

New work from an international team of scientists including Carnegie’s Sue Rhee reveals a gene responsible for anthraquinone synthesis in plants.  Their findings could help scientists cultivate a plant-based mechanism for harvesting these useful compounds in bulk quantities.

“Senna tora is a legume with anthraquinone-based medicinal properties that have long been recognized in ancient Chinese and Ayurvedic traditions, including antimicrobial and antiparasitic benefits, as well as diabetes and neurodegenerative disease prevention,” Rhee explained.

Despite its extensive practical applications, genomic studies of Senna have been limited. So, led by Sang-Ho Kang of the Korean National Institute of Agricultural Sciences and Ramesh Prasad Pandey of Sun Moon University and MIT, the research team used an array of sophisticated genetic and biochemical approaches to identify the first known anthranoid-forming enzyme in plants.

Once the process by which plants make these important compounds is fully known, this knowledge can be used to engineer a plant to produce high concentrations of anthraquinones that can be used medicinally.

“The same techniques that we use to help improve the yields of agricultural or biofuel crops can also be applied to developing sustainable production methods for plant-based medicines,” Rhee concluded.

The researchers’ work was published last week in Nature Communications.

Reference: Kang S-H, Pandey RP, Lee C-M, et al. Genome-enabled discovery of anthraquinone biosynthesis in Senna tora. Nature Communications. 2020;11(1):5875. doi:10.1038/s41467-020-19681-1.

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.