Functional analysis of RAD51B and RAD23B SNPs using Circular Chromosome Conformation Capture (4C) in human prostate cell lines

C. Cieza-Borrella¹, S. Wakerell¹, Q. Karlsson¹, R.A. Eeles ${ }^{1,2}$, Z. Kote-Jarai¹

Introduction

 polymorphisms in this gene have been associated with breast cancer susceptibility
 regulatory elements such as promoters, enhancers and silencers, which consequently leads to the regulation of gene expression and recombination ${ }^{4}$.

Aim

The aim of this study is to understand the mechanism behind the association between single nucleotide polymorphisms (SNPs), lying in non-coding regions near or within RAD51B and RAD23B, and prostate cancer risk by analysing their interactions with the whole genome using Circular Chromosome Conformation Capture (4C).

Results

Our results show a high number of interactions between the analysed SNPs and the rest of the genome. Focusing on cis associations, it is worth mentioning the significant interactions between the promoter of FUT8, whose overexpression has been associated with PrCa, and rs767127 and rs2189517 in almost all cell lines with the exception of RWPE-1 (figure 4). We found additional interactions between the rs2189517 variant and EVL/YY1 in PC3, PNT1a and RWPE-1 (figure 5). These genes might warrant further analysis, as EVL encodes a protein that exhibits RAD51 protein binding, DNA binding and DNA-annealing activities and the overexpression of YY1 transcription factor has been correlated with prostate tumour progression. We observed this same significant interaction in all cell lines except LNCaP, in which it was also detected but not significantly, when analysing rs767127. This SNP also presented a high number of interactions in PC3 and DuCaP with FOS, which is associated with tumour progression. Moreover, the rs767127 interaction with RAD51B promoter, previously observed by our collaborators, was additionally confirmed in all cell lines (figure 6). We also found remarkable the significant interactions detected between DICER1 and rs767127 and rs2189517 in PC3 and DuCaP
Regarding RAD23B SNPs, significant interactions were found between two genes closely located on chromosome 9: PTCH1 (9q22.32) and XPA (9q22.23), and all the RAD23B SNPs included in our study, although variations in the type of cells showing these contacts was observed (figures 7 and 8). Overexpression of PTCH1, involved in the hedgehog pathway and acting as tumour suppressor gene, has been described to be associated with progression and metastases in PrCa. On another hand, XPA encodes a zinc finger protein involved in the nucleotide excision repair (NER) pathway whose family members are involved in PrCa development.
One of the main limitations of this work has been the high amount of self-ligated product observed in certain 4C libraries (rs7141529 and rs2525530), which was translated into a decrement in usable read counts, below the thresholds required for analysis. We are also planning further analysis using other bioinformatics programs such as fourSig, in order to elucidate the nature of observed interactions.

Cell line	Species	Tissue	Type	Androgens	rs7714529	rs2189517	rs767127	rs252530	rst771718	rs1771723	rs28483240	rs1746831	rs1746828
Lncap	Human	Prostate	Adenocarinoma	ves	G/G	G/A	coc	ст	AA	тт	TTT	G/G	тT
Ducap	Human	Prostate	Adenocarinoma	ves	G/A	G/A	ст	ст	AA	тт	тт	G/G	t/
PC3	Human	Prostate	Adenocarinoma	No	G/A	AA	ст	тT	AA	тт	тT	G/G	тT
PNT1a	Human	Prostate	Normal	no	G/G	G/A	c/c	ст	AA	тт	тт	G/G	т/T
RWPE1	Human	Prostate	Normal	Yes	G/A	G/A	ст	ст	AG	тт	тT	G/G	т/

Materials and Methods

We analysed 9 SNPs associated with PrCa risk according to previous GWAS and fine mapping studies ${ }^{1,2}$ (table 1): rs7141529 (Original

 SNP) was described in an initial GWAS' and remained the most significantly associated RAD51B variant after stepwise logistic regression analysis²; rs2189517, a RAD51B intronic variant not correlated with the Original SNP and rs2525530, also intronic and showing the highest LD with rs2189517; rs767127, in complete LD with the Original SNP and found by our collaborators to be interacting with RAD51B promoter; rs1771718, RAD23B "European hit" and 1771723, rs28483240, rs1746831 and rs1746828, all in highest LD with the European hit.ve human epithelial prostate cell lines were selected for our study: LNCaP, DuCaP, PC3, PNT1a and RWPE-1. were provided by the PRACTICAL Consortium Oncoarray project and confirmed by Sanger sequencing (table 1).
Design of the 4 C assay was carried out using 4 C Primer Designer for 4 C viewpoints program (Nobrega lab-Human Genetics Department-University of Chicago, USA). The proximity in the genome of SNPS rs1771718 and rs1746831 and SNPs rs1771723 and s 1746828 made it possible to extrapolate the results for each pair from the same viewpoint (figures 1 and 2).

C libraries were prepared following previously described protocols ${ }^{5,6}$ (figure 3a) and optimising the conditions according to the haracteristics of the selected viewpoints and cell lines. High complexity PCRs (6 nt barcodes and adaptors attached) were set over our templates (figure 3b). Once we obtained the desired result, PCRs were quantified and quality checked by fragment size analysis sing Agilent Bioanalyzer 2100 GPCR and sequencing on a single flow cell in a MiSeq (Illumina). 4 C libraries were subsequently sequenced on an HiSeq 2500 (RAPID SR 100 cycles, Illumina).

Udigested and self-ligated reads were removed and vaild reads were assigned to restriction fragmens. Bioinormalics analysis was performed using the R program $4 C$-ker?. $4 C$-ker is a Hidden-Markov Model based pipeline which utilises adaptive window sizes to correct for differences in signal coverage in near-bait and far-cis regions. $4 C$-ker quality control thresholds are a minimum of 1 million total re

4C assay

CONCLUSIONS

 comprising of 3 C , will be carried out to validate our results.

CONTACT

Clara Cieza-Borrella (Postdoctoral Fellow)
Division of Genetics and Epidemiology
The Institute of Cancer Research, London, UK
clara.cieza-borrella@icr.ac.uk

CANCER
RESEARCH
UK

