We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
Aggressive Breast Cancers Hoard Energy, Enabling Them to Spread
News

Aggressive Breast Cancers Hoard Energy, Enabling Them to Spread

Aggressive Breast Cancers Hoard Energy, Enabling Them to Spread
News

Aggressive Breast Cancers Hoard Energy, Enabling Them to Spread

Credit: University of Michigan Rogel Cancer Center
Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Aggressive Breast Cancers Hoard Energy, Enabling Them to Spread"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Cancer cells – especially the more aggressive ones – seem to have an ability to change. It’s how they evade treatment and spread throughout the body.

But how does a cancer cell get the energy it needs to do this?

“We wondered if a cancer cell that wants to change its function can redirect energy, not because it takes on new energy, but because it has a stored reservoir of potential energy,” says Sofia D. Merajver, M.D., Ph.D.

Merajver’s lab looked at levels of glycogen, which represents a stored collection of glucose molecules. Glucose converts to energy, which cancer uses to grow, spread and metastasize. The team measured glycogen levels in cell lines representing triple-negative breast cancer, inflammatory breast cancer, hormone receptor-positive breast cancer and normal breast cells.

The study, published in PLOS ONE, found that aggressive cancers stored glycogen in very large amounts, depending on available oxygen. It’s on the order of what’s stored in the liver – an organ whose key function is storing glycogen.

“It was surprising just how much glycogen these cancer cells were storing,” Merajver says. “This means the cancer has that whole amount of glycogen ready to break down into glucose molecules when the need arises.”

Even more surprising, the researchers found that an enzyme controlling glycogen degradation in the brain played a key role in glycogen control in breast cancer. The enzyme PYG exists in several forms, including brain and liver. PYGB is primarily expressed in the brain.

Researchers knocked down PYGB in breast cancer cells and found the cells couldn’t use these energy stores and became much less aggressive. They didn’t see the same effect in the normal breast cells.

“This is a completely new way to look at the plasticity of breast cancer cells,” Merajver says. “We think that this ability to change, for breast cancer cells to rewire themselves depending on their environment, is why many patients become resistant to precision medicines. Our study shows one way the cancer cells do this is by creating a reservoir of building blocks or energy.”

Researchers believe PYGB could be a potential target to treat or prevent breast cancer metastases. Further studies will explore this link in animal models. Researchers will also investigate whether glycogen phosphorylase inhibitors, which have been studied in diabetes and heart disease, might slow or stop cancer metastasis.

Reference

Altemus, M.A. et al. (2019). Breast cancers utilize hypoxic glycogen stores via PYGB, the brain isoform of glycogen phosphorylase, to promote metastatic phenotypes. PLOS ONE. DOI: https://doi.org/10.1371/journal.pone.0220973

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.

Advertisement