We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

Fibroblast Subtypes Identified in Skin Cancer

Scientist looking into a microscope.
Credit: Fernandozhiminaicela/ Pixabay
Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 2 minutes

A study at MedUni Vienna's Department of Dermatology provides insights into the diversity of cancer-associated fibroblasts in white and black skin cancer and describes their different immunomodulatory roles in the tumor environment. The results are relevant for the development of novel skin cancer therapies, particularly in the field of immunotherapy. The study was recently published in the journal “Nature Communications”.


Fibroblasts are specialized cells in connective tissues that play an important role in wound healing and tissue repair. They produce and organize the so-called extracellular matrix, a network of proteins such as collagen, which makes the tissue stable and elastic, but also perform many other tasks.

Want more breaking news?

Subscribe to Technology Networks’ daily newsletter, delivering breaking science news straight to your inbox every day.

Subscribe for FREE
Cancer-associated fibroblasts (CAFs) are an important component in solid tumors. They play a decisive role in cancer development and have a significant influence on the success of therapy. A study at MedUni Vienna's Department of Dermatology was the first to investigate the previously unknown diversity of CAFs in various types of skin cancer - basal cell carcinoma, squamous cell carcinoma and melanoma - at molecular and spatial levels in single-cell analysis.


Through a comprehensive study of fibroblasts in the tumor environment, including their interaction with other cells such as epithelial, mesenchymal and immune cells, three clearly distinguishable subtypes of CAFs (cancer-associated fibroblasts) were identified: myofibroblast-like RGS5+ CAFs, matrix CAFs (mCAFs) and immunomodulatory CAFs (iCAFs). It is particularly striking that the distribution of these subtypes changes with increasing aggressive of tumors.

Distinct subtypes with different roles in the tumor microenvironment

Two of these subtypes have the ability to influence the immune system, but in different ways. The mCAFs produce more matrix proteins and are often found at the tumor-stroma border in less aggressive tumors. They surround the tumor nests and may prevent immune cells such as T cells from invading the tumor. In contrast, iCAFs are increasingly found in aggressive forms of skin cancer (invasive basal cell carcinoma and high-grade melanoma). These cells produce large amounts of signaling factors (cytokines and chemokines) that play an important role in attracting and activating immune cells.


“Interestingly, it was shown that healthy fibroblasts that are exposed to the secretome of skin cancer cells in the laboratory develop a similar behavior to iCAFs and are capable of activating naive T cells,” says study leader Beate Lichtenberger from MedUni Vienna's Department of Dermatology, describing the results, ”this shows that it may be possible to target these subtypes.”


The results of this study are relevant for the development of novel skin cancer therapies, particularly in the field of immunotherapy. Beate Lichtenberger on the significance of the findings: “The targeted treatment of the various CAF subtypes, in particular the immunomodulatory iCAFs, could significantly improve the success of therapy by strengthening the immune response and limiting the spread of tumor cells. These new findings could provide the basis for innovative therapeutic approaches and make skin cancer treatments significantly more effective.”


Reference: Forsthuber A, Aschenbrenner B, Korosec A, et al. Cancer-associated fibroblast subtypes modulate the tumor-immune microenvironment and are associated with skin cancer malignancy. Nat Commun. 2024. doi: 10.1038/s41467-024-53908-9


This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source. Our press release publishing policy can be accessed here.