We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
Machine Learning Predicts Chemo-induced Side Effects in Patients With Testicular Cancer
News

Machine Learning Predicts Chemo-induced Side Effects in Patients With Testicular Cancer

Machine Learning Predicts Chemo-induced Side Effects in Patients With Testicular Cancer
News

Machine Learning Predicts Chemo-induced Side Effects in Patients With Testicular Cancer

Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Machine Learning Predicts Chemo-induced Side Effects in Patients With Testicular Cancer"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Testicular cancer is the most common cancer in young men. The number of new cases is increasing worldwide. There is a relatively high survival rate, with 95% surviving after 10 years - if detected in time and treated properly. However, the standard chemotherapy includes cisplatin which has a wide range of long-term side effects, one of which can be nephrotoxicity.

"In testicular cancer patients, cisplatin-based chemotherapy is essential to ensure a high cure rate. Unfortunately, treatment can cause side effects, including renal impairment. However, we are not able to pinpoint who ends up having side effects and who does not," says Jakob Lauritsen from Rigshospitalet.

Patient data is key to knowledge

The researchers, therefore, asked the question: How far can we go in predicting nephrotoxicity risk in these patients using machine learning? First, it required some patient data.

"Using a cohort of testicular-cancer patients from Denmark- in collaboration with Rigshospitalet, we developed a machine learning predictive model to tackle this problem" says Sara Garcia, a researcher at DTU Health Technology, who, together with Jakob Lauritsen, are the first authors of an article published recently in JNCI Cancer Spectrum.

The high-quality of Danish patient records allowed the identification of key patients, and a technology partnership between DMAC and YouDoBio facilitated DNA collection from patients at their homes using postal delivered saliva kits. The project, originally funded by the Danish Cancer Society, saw the development of several analyses strategies of genomics and patient data, bringing forward the promise of artificial intelligence for integration of diverse data streams.

Best predictions for low-risk patients

A risk score for an individual to develop nephrotoxicity during chemotherapy was generated, and key genes likely at play were proposed. Patients were classified into high, low, and intermediate risk. For the high-risk, the model was able to correctly predict 67% of affected patients, while for the low-risk, the model correctly predicted 92% of the patients that did not develop nephrotoxicity.

"Understanding how and where AI technologies can be applied in clinical care, is increasingly important also in the future of responsible AI. Despite patient data complexity, the high quality of Danish registries and clinical research make it a great environment for exploring new data methodologies" says Ramneek Gupta.

"Being able to predict late side-effects will ultimately give us the opportunity for preventive action and improved quality of life" adds Gedske Daugaard who is joint senior author with Ramneek Gupta. JNCI Cancer Spectrum. DOI: https://doi.org/10.1093/jncics/pkaa032

Reference: Garcia, et al. (2020) Prediction of Nephrotoxicity Associated With Cisplatin-Based Chemotherapy in Testicular Cancer Patients

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.

Advertisement